Banners System

СИСТЕМЫ УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ #03/96
<< ПРЕДЫДУЩАЯ СТАТЬЯ ] [ ОГЛАВЛЕНИЕ ] [ СЛЕДУЮЩАЯ СТАТЬЯ >>

Введение в СУБД
Часть 7*)

С.Д. Кузнецов

Глава 9. Может ли толпа людей пройти через узкую дверь и не слишком наломать бока, или Управление транзакциями в системах баз данных
1. Понятие транзакции
2. Транзакции и целостность баз данных
3. Изолированность пользователей
4. Сериализация транзакций
5. Методы сериализации транзакций
6. Синхронизационные блокировки
7. Гранулированные синхронизационные блокировки
8. Предикатные синхронизационные захваты
9. Тупики, распознавание и разрушение
10. Метод временных меток
Глава 10. Надежно можно жить только имея запасы, или Журнализация изменений БД
1. Накопительство: порок или достоинство?
2. Журнализация и буферизация
3. Индивидуальный откат транзакции
4. Восстановление после мягкого сбоя
5. Физическая согласованность базы данных
6. Восстановление после жесткого сбоя

Глава 9. Может ли толпа людей пройти через узкую дверь и не слишком наломать бока, или Управление транзакциями в системах баз данных

1. Понятие транзакции

Поддержание механизма транзакций - показатель уровня развитости СУБД. Корректное поддержание транзакций одновременно является основой обеспечения целостности баз данных (и поэтому транзакции вполне уместны и в однопользовательских персональных СУБД), а также составляют базис изолированности пользователей в многопользовательских системах. Часто эти два аспекта рассматриваются по отдельности, но на самом деле они взаимосвязаны, что и будет показано в этой лекции.

Заметим, что, хотя, с точки зрения обеспечения целостности баз данных, механизм транзакций следовало бы поддерживать в персональных СУБД, на практике это обычно не выполняется. Поэтому при переходе от персональных к многопользовательским СУБД пользователи и сталкиваются с необходимостью четкого понимания природы транзакций.

Под транзакцией понимается неделимая с точки зрения воздействия на БД последовательность операторов манипулирования данными (чтения, удаления, вставки, модификации) такая, что либо результаты всех операторов, входящих в транзакцию, отображаются в БД, либо воздействие всех этих операторов полностью отсутствует. Основной смысл транзакции - "Все или ничего": при завершении транзакции оператором COMMIT результаты гарантированно фиксируются во внешней памяти (смысл термина commit - "зафиксировать" результаты транзакции); при завершении транзакции оператором ROLLBACK результаты гарантированно отсутствуют во внешней памяти (смысл термина rollback - ликвидировать результаты транзакции).

2. Транзакции и целостность баз данных

Понятие транзакции имеет непосредственную связь с понятием целостности БД. Очень часто БД может обладать такими ограничениями целостности, которые просто невозможно не нарушить, выполняя только один оператор изменения БД. Например, в базе данных СОТРУДНИКИ-ОТДЕЛЫ естественным ограничением целостности является совпадения значения атрибута ОТД_РАЗМЕР в кортеже отношения ОТДЕЛЫ, описывающем данный отдел (например отдел 320), с числом кортежей отношения СОТРУДНИКИ, таких, что значение атрибута СОТР_ОТД_НОМЕР равно 320. Как в этом случае принять на работу в отдел 320 нового сотрудника? Независимо от того, какая операция будет выполнена первой - вставка нового кортежа в отношение СОТРУДНИКИ или модификация существующего кортежа в отношении ОТДЕЛЫ - после выполнения операции база данных окажется в нецелостном состоянии.

Поэтому для поддержания подобных ограничений целостности допускается их нарушение внутри транзакции с тем условием, чтобы к моменту завершения транзакции условия целостности были соблюдены. В системах с развитыми средствами ограничения и контроля целостности каждая транзакция начинается при целостном состоянии БД и должна оставить это состояние целостными после своего завершения. Несоблюдение этого условия приводит к тому, что вместо фиксации результатов транзакции происходит ее откат (т.е. вместо оператора COMMIT выполняется оператор ROLLBACK), и БД остается в таком состоянии, в котором находилась к моменту начала транзакции, т.е. в целостном состоянии.

Если быть немного более точным, различаются два вида ограничений целостности: немедленно проверяемые и откладываемые. К немедленно проверяемым ограничениям целостности относятся такие ограничения, проверку которых бессмысленно или даже невозможно откладывать. Примером ограничения, проверку которого откладывать бессмысленно, являются ограничения домена (возраст сотрудника, по крайней мере в России, не может превышать 150 лет). Более сложным ограничением, проверку которого невозможно отложить, является следующее: зарплата сотрудника не может быть увеличена за одну операцию более, чем на 100000 рублей (нужно же бороться с инфляцией...). Немедленно проверяемые ограничения целостности соответствуют уровню отдельных операторов языкового уровня СУБД. При их нарушениях не производится откат транзакции, а лишь отвергается соответствующий оператор.

Откладываемые ограничения целостности - это ограничения на базу данных, а не на какие-либо отдельные операции. По умолчанию такие ограничения проверяются при конце транзакции, и их нарушение вызывает автоматическую замену оператора COMMIT на оператор ROLLBACK. Однако в некоторых системах поддерживается специальный оператор насильственной проверки ограничений целостности внутри транзакции. Если после выполнения такого оператора обнаруживается, что условия целостности не выполнены, пользователь может сам выполнить оператор ROLLBACK или постараться устранить причины нецелостного состояния базы данных внутри транзакции (видимо, это осмысленно только при использовании интерактивного режима работы).

И еще одно замечание. С точки зрения внешнего представления, в момент завершения транзакции проверяются все откладываемые ограничения целостности, определенные в этой базе данных. Однако при реализации стремятся при выполнении транзакции динамически выявить те ограничения целостности, которые действительно могли бы быть нарушены. Например, если при выполнении транзакции над базой данных СОТРУДНИКИ-ОТДЕЛЫ в ней не выполнялись операторы вставки или удаления кортежей из отношения СОТРУДНИКИ, то проверять упоминавшееся выше ограничение целостности не требуется (а проверка подобных ограничений составляет достаточно большую работу).

3. Изолированность пользователей

В многопользовательских системах с одной базой данных одновременно могут работать несколько интерактивных пользователей или прикладных программ. Предельной задачей системы является обеспечение изолированности пользователей, т.е. создание достоверной и надежной иллюзии того, что каждый из пользователей работает с БД в одиночку.

В связи со свойством сохранения целостности БД транзакции являются подходящими единицами изолированности пользователей. Действительно, если с каждым сеансом работы с базой данных ассоциируется транзакция, то каждый пользователь начинает работу с согласованным состоянием базы данных, т.е. с таким состоянием, в котором база данных могла бы находиться, даже если бы пользователь работал с ней в одиночку.

При соблюдении обязательного требования поддержания целостности базы данных возможны следующие уровни изолированности транзакций:

первый уровень - отсутствие потерянных изменений.

Рассмотрим следующий сценарий совместного выполнения двух транзакций. Транзакция 1 изменяет объект базы данных A. До завершения транзакции 1 транзакция 2 также изменяет объект A. Транзакция 2 завершается оператором ROLLBACK (например, по причине нарушения ограничений целостности). Тогда при повторном чтении объекта A транзакция 1 не видит изменений этого объекта, произведенных ранее. Такая ситуация называется ситуацией потерянных изменений. Естественно, она противоречит требованию изолированности пользователей. Чтобы избежать такой ситуации в транзакции 1, требуется до завершения транзакции 1 запретить любой другой транзакции изменять объект A. Отсутствие потерянных изменений является минимальным требованием к СУБД по части синхронизации параллельно выполняемых транзакций, поскольку в этом случае обеспечивается требование целостности БД при завершении любой транзакции (если не верите, проверьте).

Второй уровень - отсутствие чтения "грязных данных".

Рассмотрим следующий сценарий совместного выполнения транзакций 1 и 2. Транзакция 1 изменяет объект базы данных A. Параллельно с этим транзакция 2 читает объект A. Поскольку операция изменения еще не завершена, транзакция 2 видит несогласованные "грязные" данные (в частности, операция транзакции 1 может быть отвернута при проверке немедленно проверяемого ограничения целостности). Это тоже не соответствует требованию изолированности пользователей (каждый пользователь начинает свою транзакцию при согласованном состоянии базы данных и вправе ожидать увидеть согласованные данные). Чтобы избежать ситуации чтения "грязных" данных, до завершения транзакции 1, изменившей объект A, никакая другая транзакция не должна иметь возможности читать объект A (минимальным требованием является блокировка чтения объекта A до завершения операции его изменения в транзакции 1).

Третий уровень - отсутствие неповторяющихся чтений.

Рассмотрим следующий сценарий. Транзакция 1 читает объект базы данных A. До завершения транзакции 1 транзакция 2 изменяет объект A и успешно завершается оператором COMMIT. Транзакция 1 повторно читает объект A и видит его измененное состояние (ничего себе изолированность!). Чтобы избежать неповторящихся чтений, до завершения транзакции 1 никакая другая транзакция не должна иметь возможности изменять объект A. В большинстве систем это является максимальным требованием к синхронизации транзакций, хотя, как мы увидим немного позже, отсутствие неповторяющихся чтений еще не гарантирует реальной изолированности пользователей.

Заметим, что существует возможность обеспечения разных уровней изолированности для разных транзакций, выполняющихся в одной системе баз данных (в частности, соответствующие операторы предусмотрены в стандарте SQL 2). Как мы уже отмечали, для поддержания целостности БД достаточен первый уровень. Существует ряд приложений, для которых поддержка первого уровня изолированности достаточна (например прикладные или системные статистические утилиты, для которых некоррректность индивидуальных данных несущественна). При этом удается существенно сократить накладные расходы СУБД и повысить общую эффективность.

К более тонким проблемам изолированности транзакций относится так называемая проблема кортежей-"фантомов", вызывающая ситуации, которые также противоречат изолированности пользователей.

Рассмотрим следующий сценарий. Транзакция 1 выполняет оператор A выборки кортежей отношения R с условием выборки S (т.е. выбирается часть кортежей отношения R, удовлетворяющих условию S). До завершения транзакции 1 транзакция 2 вставляет в отношение R новый кортеж r, удовлетворяющий условию S, и успешно завершается. Транзакция 1 повторно выполняет оператор A, и в результате выборки появляется кортеж, который отсутствовал при первом выполнении оператора. Конечно, такая ситуация противоречит идее изолированности транзакций и может возникнуть даже на третьем уровне изолированности транзакций. Чтобы избежать появления кортежей-фантомов, требуется более высокий "логический" уровень синхронизации транзакций. Идеи такой синхронизации (предикатные синхронизационные захваты) известны давно, но в большинстве систем не реализованы.

4. Сериализация транзакций

Понятно, что для того, чтобы добиться изолированности транзакций, в СУБД должны использоваться какие-либо методы регулирования совместного выполнения транзакций.

План (способ) выполнения набора транзакций называется сериальным (простите, но лучшего термина на русском языке не знаю), если результат совместного выполнения транзакций эквивалентен результату некоторого последовательного выполнения этих же транзакций.

Сериализация транзакций (тоже прекрасное словосочетание...) - это механизм их выполнения по некоторому сериальному плану. Обеспечение такого механизма является основной функцией компонента СУБД, ответственного за управление транзакциями. Система, в которой поддерживается сериализация транзакций, обеспечивает реальную изолированность пользователей.

Основная реализационная проблема состоит в выборе метода сериализации набора транзакций, который не слишком ограничивал бы их параллельность. Приходящим на ум тривиальным решением является действительно последовательное выполнение транзакций. Но существуют ситуации, в которых можно выполнять операторы разных транзакций в любом порядке с сохранением сериальности. Примерами могут служить только читающие транзакции, а также транзакции, не конфликтующие по доступу к объектам базы данных.

Между транзакциями могут существовать следующие виды конфликтов:

W-W - транзакция 2 пытается изменять объект, измененный не закончившейся транзакцией 1;

R-W - транзакция 2 пытается изменять объект, прочитанный не закончившейся транзакцией 1;

W-R - транзакция 2 пытается читать объект, измененный не закончившейся транзакцией 1.

Практические методы сериализации транзакций основывается на учете этих конфликтов.

5. Методы сериализации транзакций

Существуют два базовых подхода к сериализации транзакций: подход, основанный на синхронизационных захватах объектов базы данных, и подход, основанный на использовании временных меток. Суть обоих подходов состоит в обнаружении конфликтов транзакций и их устранении. Ниже мы рассмотрим эти подходы сравнительно подробно.

Предварительно заметим, что для каждого из подходов имеются две разновидности - пессимистическая и оптимистическая. При применении пессимистических методов, ориентированных на ситуации, когда конфликты возникают часто, конфликты распознаются и разрешаются немедленно при их возникновении (реальном или подразумеваемом). Оптимистические методы основываются на том, что результаты всех операций модификации базы данных сохраняются в рабочей памяти транзакций. Реальная модификация базы данных производится только на стадии фиксации транзакции. Тогда же проверяется, не возникают ли конфликты с другими транзакциями.

Далее мы ограничимся рассмотрением более распространенных пессимистических разновидностей методов сериализации транзакций. Пессимистические методы сравнительно просто трансформируются в свои оптимистические варианты.

6. Синхронизационные блокировки

Наиболее распространенным в централизованных СУБД (включающих системы, основанные на архитектуре клиент-сервер) является подход, основанный на соблюдении двухфазного протокола синхронизационных блокировок объектов БД (иногда вместо термина "блокировка" мы будем использовать эквивалентный по смыслу термин "захват"). В общих чертах протокол состоит том, что перед выполнением любой операции в транзакции T над объектом базы данных r от имени транзакции T запрашивается синхронизационный захват объекта r в соответствующем режиме (в зависимости от вида операции).

Основными режимами синхронизационных захватов являются:

совместный режим - S (Shared), означающий разделяемый захват объекта и требуемый для выполнения операции чтения объекта (по-другому мы будем называть S-захват объекта БД захватом по чтению);

монопольный режим - X (eXclusive), означающий монопольный захват объекта и требуемый для выполнения операций занесения, удаления и модификации (по-другому мы будем называть X-захват объекта БД захватом по записи).

Захваты объектов несколькими транзакциями по чтению совместимы, т.е. нескольким транзакциям допускается читать один и тот же объект. Захват объекта одной транзакцией по чтению не совместим с захватом другой транзакцией того же объекта по записи, и захваты одного объекта разными транзакциями по записи не совместимы. Правила совместимости захватов одного объекта разными транзакциями изображены на следующей таблице:

X
S
-
да
да
X
нет
нет
S
нет
да

В первом столбце приведены возможные состояния объекта с точки зрения синхронизационных захватов. При этом "-" соответствует состоянию объекта, для которого не установлен никакой захват. Транзакция, запросившая синхронизационный захват объекта БД, уже захваченный другой транзакцией в несовместимом режиме, блокируется до тех пор, пока захват этого объекта не будет снят.

Заметим, что слово "нет" в нашей таблице соответствует описанным ранее возможным случаям конфликтов транзакций по доступу к объектам базы данных (WW, RW, WR). Совместимость S-захватов соответствует тому, что конфликт RR не существует.

Для обеспечения сериализации транзакций (третьего уровня изолированности) синхронизационные захваты объектов, произведенные по инициативе транзакции, можно снимать только при ее завершении. Это требование порождает двухфазный протокол синхронизационных захватов - 2PL (Two-Phase Locks). В соответствии с этим протоколом выполнение транзакции разбивается на две фазы: первая фаза транзакции - накопление захватов; вторая фаза (фиксация или откат) - освобождение захватов.

Достаточно легко убедиться, что при соблюдении двухфазного протокола синхронизационных захватов действительно обеспечивается сериализация транзакций на третьем уровне изолированности. Основная проблема состоит в том, что следует считать объектом для синхронизационного захвата?

В контексте реляционных баз данных возможны следующие альтернативы: файл - физический (с точки зрения базы данных) объект, область хранения нескольких отношений и, возможно, индексов; отношение - логический объект, соответствующий множеству кортежей данного отношения; страница данных - физический объект, хранящий кортежи одного или нескольких отношений, индексную или служебную информацию; кортеж - элементарный физический объект базы данных.

На самом деле, когда мы говорим про операции над объектами базы данных, то любая операция над кортежем, фактически, является и операцией над страницей, в которой этот кортеж хранится, и над соответствующим отношением, и над файлом, содержащим отношение. Поэтому действительно имеется выбор уровня объекта захвата.

Понятно, что чем крупнее объект синхронизационного захвата (неважно, какой природы этот объект - логический или физический), тем меньше синхронизационных захватов будет поддерживаться в системе, и на это, соответственно, будут тратиться меньшие накладные расходы. Более того, если выбрать в качестве уровня объектов для захватов файл или отношение, то будет решена даже проблема фантомов (если это не ясно сразу, посмотрите еще раз на формулировку проблемы фантомов и определение двухфазного протокола захватов).

Но вся беда в том, что при использовании для захватов крупных объектов возрастает вероятность конфликтов транзакций и тем самым уменьшается допускаемая степень их параллельного выполнения. Фактически, при укрупнении объекта синхронизационного захвата мы умышленно огрубляем ситуацию и видим конфликты в тех ситуациях, когда на самом деле конфликтов нет.

Разработчики многих систем начинали с использования страничных захватов, полагая это некоторым компромиссом между стремлениями сократить накладные расходы и сохранить достаточно высокий уровень параллельности транзакций. Но это не очень хороший выбор. Мы не будем останавливаться на деталях, но заметим, что использование страничных захватов в двухфазном протоколе иногда вызывает очень неприятные синхронизационные проблемы, усложняющие организацию СУБД. В большинстве современных систем применяются покортежные синхронизационные захваты.

Но при этом возникает очередной вопрос. Если единицей захвата является кортеж, то какие синхронизационные захваты потребуются при выполнении таких операций, как уничтожение отношения? Было бы довольно нелепо перед выполнением такой операции потребовать захвата всех существующих кортежей отношения. Кроме того, это не предотвратило бы возможности параллельной вставки в другой транзакции нового кортежа в уничтожаемое отношение.

7. Гранулированные синхронизационные блокировки

Подобные рассуждения привели к разработке аппарата гранулированных синхронизационных захватов. При применении этого подхода синхронизационные захваты могут запрашиваться по отношению к объектам разного уровня: файлам, отношениям и кортежам. Требуемый уровень объекта определяется тем, какая операция выполняется (например, для выполнения операции уничтожения отношения объектом синхронизационного захвата должно быть все отношение, а для выполнения операции удаления кортежа - этот кортеж). Объект любого уровня может быть захвачен в режиме S или X.

Наиболее важное отличие, на котором, собственно, держится соответствие захватов разного уровня, состоит в следующем. Вводятся специальный протокол гранулированных захватов и новые типы захватов: перед захватом объекта в режиме S или X соответствующий объект более верхнего уровня должен быть захвачен в режиме IS, IX или SIX. Что же представляют собой эти режимы захватов?

IS (Intented for Shared lock) по отношению к некоторому составному объекту O означает намерение захватить некоторый входящий в O объект в совместном режиме. Например, при намерении читать кортежи из отношения R это отношение должно быть захвачено в режиме IS (а до этого в таком же режиме должен быть захвачен файл).

IX (Intented for eXclusive lock) по отношению к некоторому составному объекту O означает намерение захватить некоторый входящий в O объект в монопольном режиме. Например, при намерении удалять кортежи из отношения R это отношение должно быть захвачено в режиме IX (а до этого в таком же режиме должен быть захвачен файл).

SIX (Shared, Intented for eXclusive lock) по отношению к некоторому составному объекту O означает совместный захват всего этого объекта с намерением впоследствии захватывать какие-либо входящие в него объекты в монопольном режиме. Например, если выполняется длинная операция просмотра отношения с возможностью удаления некоторых просматриваемых кортежей, то экономичнее всего захватить это отношение в режиме SIX (а до этого захватить файл в режиме IS).

Довольно трудно описать словами все возможные ситуации. Мы ограничимся приведением полной таблицы совместимости блокировок, анализируя которую, можно выявить все случаи:

X
S
IX
IS
SIX
-
да
да
да
да
да
X
нет
нет
нет
да
нет
S
нет
да
нет
да
нет
IX
нет
нет
да
да
нет
IS
нет
да
да
да
да
SIX
нет
нет
нет
да
нет

8. Предикатные синхронизационные захваты

Несмотря на привлекательность метода гранулированных синхронизационных захватов, следует отметить, что он не решает проблему фантомов (если, конечно, не ограничиться использованием захватов отношений в режимах S и X). Давно известно, что для решения этой проблемы необходимо перейти от захватов индивидуальных объектов базы данных к захвату условий (предикатов), которым удовлетворяют эти объекты. Проблема фантомов не возникает при использовании для синхронизации уровня отношений именно потому, что отношение как логический объект представляет собой неявное условие для блокировки входящих в него кортежей. Захват отношения - это простой и частный случай предикатного захвата.

Поскольку любая операция над реляционной базой данных задается некоторым условием (т.е. в ней указывается не конкретный набор объектов базы данных, над которыми нужно выполнить операцию, а условие, которому должны удовлетворять объекты этого набора), идеальным выбором было бы требовать синхронизационный захват в режиме S или X именно этого условия. Но если посмотреть на общий вид условий, допускаемых, например, в языке SQL, то становится абсолютно непонятно, как определить совместимость двух предикатных захватов. Ясно, что без этого использовать предикатные захваты для синхронизации транзакций невозможно, а в общей форме проблема неразрешима (правильнее сказать, что решение ее пока неизвестно).

К счастью, эта проблема сравнительно легко решается для случая простых условий. Будем называть простым условием конъюнкцию простых предикатов, имеющих вид

имя-атрибута { = > < } значение

В типичных СУБД, поддерживающих двухуровневую организацию (языковой уровень и уровень управления внешней памяти), в интерфейсе подсистем управления памятью (которая обычно заведует и сериализацией транзакций) допускаются только простые условия. Подсистема языкового уровня производит компиляцию исходного оператора со сложным условием в последовательность обращений к ядру СУБД, в каждом из которых содержатся только простые условия. Следовательно, в случае типовой организации реляционной СУБД простые условия можно использовать как основу предикатных захватов.

Для простых условий совместимость предикатных захватов легко определяется на основе следующей геометрической интерпретации.

Пусть R отношение с атрибутами a1, a2, .., an, а m1, m2, .., mn - множества допустимых значений a1, a2, .., an соответственно (понятно, что все эти множества - конечные). Тогда можно сопоставить R конечное n-мерное пространство возможных значений кортежей R. Любое простое условие "вырезает" m-мерный прямоугольник в этом пространстве (m ё n).

Тогда S-X, X-S, X-X предикатные захваты от разных транзакций совместимы, если соответствующие прямоугольники не пересекаются.

Это иллюстрируется следующим примером, показывающим, что в каких бы режимах не требовала транзакция 1 захвата условия (1 ё a ё 4) & (b = 5), а транзакция 2 - условия (1 ё a ё 5) & (1 ё b ё 3), эти захваты всегда совместимы.

Example

Заметим, что предикатные захваты простых условий описываются таблицами, немногим отличающимися от таблиц традиционных синхронизаторов.

9. Тупики, распознавание и разрушение

Одним из наиболее чувствительных недостатков метода сериализации транзакций на основе синхронизационных захватов является возможность возникновения тупиков (deadlocks) между транзакциями. Тупики возможны при применении любого из рассмотренных нами вариантов.

Вот простой пример возникновения тупика между транзакциями T1 и T2: транзакции T1 и T2 установили монопольные захваты объектов r1 и r2, соответственно; после этого T1 требуется совместный захват r2, а T2 - совместный захват r1. Ни одна из транзакций не может продолжаться, следовательно, монопольные захваты не будут сняты, а совместные - не будут удовлетворены. Поскольку тупики возможны, и никакого естественного выхода из тупиковой ситуации не существует, то эти ситуации необходимо обнаруживать и искусственно устранять.

Основой обнаружения тупиковых ситуаций является построение (или постоянное поддержание) графа ожидания транзакций. Граф ожидания транзакций - это ориентированный двудольный граф, в котором существует два типа вершин - вершины, соответствующие транзакциям, и вершины, соответствующие объектам захвата. В этом графе существует дуга, ведущая из вершины-транзакции к вершине-объекту, если для этой транзакции существует удовлетворенный захват объекта. В графе существует дуга из вершины-объекта к вершине-транзакции, если транзакция ожидает удовлетворения захвата объекта.

Легко показать, что в системе существует ситуация тупика, если в графе ожидания транзакций имеется хотя бы один цикл.

Для распознавания тупика периодически производится построение графа ожидания транзакций (как уже отмечалось, иногда граф ожидания поддерживается постоянно), и в этом графе ищутся циклы. Традиционной техникой (для которой существует множество разновидностей) нахождения циклов в ориентированном графе является редукция графа.

Если не вдаваться в детали, редукция состоит в том, что прежде всего из графа ожидания удаляются все дуги, исходящие из вершин-транзакций, в которые не входят дуги из вершин-объектов. (Это как бы соответствует той ситуации, что транзакции, не ожидающие удовлетворения захватов, успешно завершились и освободили захваты.) Для тех вершин-объектов, для которых не осталось входящих дуг, но существуют исходящие, ориентация исходящих дуг изменяется на противоположную (это моделирует удовлетворение захватов). После этого снова срабатывает первый шаг, и так до тех пор, пока на первом шаге не прекратится удаление дуг. Если в графе остались дуги, то они обязательно образуют цикл.

Предположим, что нам удалось найти цикл в графе ожидания транзакций. Что делать теперь? Нужно каким-то образом обеспечить возможность продолжения работы хотя бы для части транзакций, попавших в тупик. Разрушение тупика начинается с выбора в цикле транзакций так называемой транзакции-жертвы, т.е. транзакции, которой решено пожертвовать, чтобы обеспечить возможность продолжения работы других транзакций.

Грубо говоря, критерием выбора является стоимость транзакции; жертвой выбирается самая дешевая транзакция. Стоимость транзакции определяется на основе многофакторной оценки, в которую с разными весами входят время выполнения, число накопленных захватов, приоритет.

После выбора транзакции-жертвы выполняется откат этой транзакции, который может носить полный или частичный характер. При этом, естественно, освобождаются захваты и может быть продолжено выполнение других транзакций.

Естественно, такое насильственное устранение тупиковых ситуаций является нарушением принципа изолированности пользователей, которого невозможно избежать.

Заметим, что в централизованных системах стоимость построения графа ожидания сравнительно невелика, но она становится слишком большой в по-настоящему распределенных СУБД, в которых транзакции могут выполняться в разных узлах сети. Поэтому в таких системах обычно используются другие методы сериализации транзакций.

Еще одно замечание. Чтобы минимизировать число конфликтов между транзакциями, в некоторых СУБД (например в Oracle) используется следующее развитие подхода. Монопольный захват объекта блокирует только изменяющие транзакции. После выполнения операции модификации предыдущая версия объекта остается доступной для чтения в других транзакциях. Кратковременная блокировка чтения требуется только на период фиксации изменяющей транзакции, когда обновленные объекты становятся текущими.

10. Метод временных меток

Альтернативный метод сериализации транзакций, хорошо работающий в условиях редких конфликтов транзакций и не требующий построения графа ожидания транзакций, основан на использовании временных меток.

Основная идея метода (у которого существует множество разновидностей) состоит в следующем: если транзакция T1 началась раньше транзакции T2, то система обеспечивает такой режим выполнения, как если бы T1 была целиком выполнена до начала T2.

Для этого каждой транзакции T предписывается временная метка t, соответствующая времени начала T. При выполнении операции над объектом r транзакция T помечает его своей временной меткой и типом операции (чтение или изменение).

Перед выполнением операции над объектом r транзакция T1 выполняет следующие действия.

Проверяет, не закончилась ли транзакция T, пометившая этот объект.

Если T закончилась, T1 помечает объект r и выполняет свою операцию.

Если транзакция T не завершилась, то T1 проверяет конфликтность операций.

Если операции неконфликтны, при объекте r остается или проставляется временная метка с меньшим значением, и транзакция T1 выполняет свою операцию.

Если операции T1 и T конфликтуют, то при t(T) > t(T1) (т.е. транзакция T является более "молодой", чем T), производится откат T, и T1 продолжает работу.

Если же t(T) < t(T1) (T "старше" T1), то T1 получает новую временную метку и начинается заново.

К недостаткам метода временных меток относятся потенциально более частые откаты транзакций, чем в случае использования синхронизационных захватов. Это связано с тем, что конфликтность транзакций определяется более грубо. Кроме того, в распределенных истемах не очень просто вырабатывать глобальные временные метки с отношением полного порядка (это отдельная большая наука).

Но в распределенных системах эти недостатки окупаются тем, что не нужно распознавать тупики, а как мы уже отмечали, построение графа ожидания в распределенных системах стоит очень дорого.

Глава 10. Надежно можно жить только имея запасы, или Журнализация изменений БД

1. Накопительство: порок или достоинство?

Одним из основных требований к развитым СУБД является надежность хранения баз данных. Это требование предполагает, в частности, возможность восстановления согласованного состояния базы данных после любого рода аппаратных и программных сбоев. Очевидно, что для выполнения восстановлений необходима некоторая дополнительная информация. В подавляющем большинстве современных реляционных СУБД такая избыточная дополнительная информация поддерживается в виде журнала изменений базы данных.

Итак, общей целью журнализации изменений баз данных является обеспечение возможности восстановления согласованного состояния базы данных после любого сбоя. Поскольку основой поддержания целостного состояния базы данных является механизм транзакций, журнализация и восстановление тесно связаны с понятием транзакции. Общие принципы восстановления следующие: результаты зафиксированных транзакций должны быть сохранены в восстановленном состоянии базы данных; результаты незафиксированных транзакций должны отсутствовать в восстановленном состоянии базы данных.

Это, собственно, и означает, что восстанавливается последнее, по времени согласованное состояние базы данных.

Возможны следующие ситуации, при которых требуется производить восстановление состояния базы данных.

Индивидуальный откат транзакции.

Тривиальной ситуацией отката транзакции является ее явное завершение оператором ROLLBACK. Возможны также ситуации, когда откат транзакции инициируется системой. Примерами могут быть возникновение исключительной ситуации в прикладной программе (например деление на ноль) или выбор транзакции в качестве жертвы при обнаружении синхронизационного тупика. Для восстановления согласованного состояния базы данных при индивидуальном откате транзакции нужно устранить последствия операторов модификации базы данных, которые выполнялись в этой транзакции.

Восстановление после внезапной потери содержимого оперативной памяти (мягкий сбой).

Такая ситуация может возникнуть при аварийном выключении электрического питания, при возникновении неустранимого сбоя процессора (например срабатывании контроля оперативной памяти) и т.д. Ситуация характеризуется потерей той части базы данных, которая к моменту сбоя содержалась в буферах оперативной памяти.

Восстановление после поломки основного внешнего носителя базы данных (жесткий сбой).

Эта ситуация при достаточно высокой надежности современных устройств внешней памяти может возникать сравнительно редко, но тем не менее СУБД должна быть в состоянии восстановить базу данных даже и в этом случае. Основа восстановления - архивная копия и журнал изменений базы данных.

Во всех трех случаях основой восстановления является избыточное хранение данных. Эти избыточные данные хранятся в журнале, содержащем последовательность записей об изменении базы данных.

Возможны два основных варианта ведения журнальной информации. В первом варианте для каждой транзакции поддерживается отдельный локальный журнал изменений базы данных этой транзакцией. Эти локальные журналы используются для индивидуальных откатов транзакций и могут поддерживаться в оперативной (правильнее сказать, в виртуальной) памяти. Кроме того, поддерживается общий журнал изменений базы данных, используемый для восстановления состояния базы данных после мягких и жестких сбоев.

Этот подход позволяет быстро выполнять индивидуальные откаты транзакций, но приводит к дублированию информации в локальных и общем журналах. Поэтому чаще используется второй вариант - поддержание только общего журнала изменений базы данных, который применяется и при выполнении индивидуальных откатов. Далее мы рассматриваем именно этот вариант.

2. Журнализация и буферизация

Журнализация изменений тесно связана не только с управлением транзакциями, но и с буферизацией страниц базы данных в оперативной памяти. По причинам объективно существующей разницы в скорости работы процессоров и оперативной памяти и устройств внешне памяти (эта разница в скорости существовала, существует и будет существовать всегда) буферизация страниц базы данных в оперативной памяти - единственный реальный способ достижения удовлетворительной эффективности СУБД.

Если бы запись об изменении базы данных, которая должна поступить в журнал при выполнении любой операции модификации базы данных, реально немедленно записывалась бы во внешнюю память, это привело бы к существенному замедлению работы системы (она фактически работала бы со скоростью магнитного диска). Поэтому записи в журнал тоже буферизуются: при нормальной работе очередная страница выталкивается во внешнюю память журнала только при полном заполнении буфера записями.

Но реальная ситуация является более сложной. Имеются два вида буферов - буфер журнала и буфер страниц оперативной памяти, которые содержат связанную информацию. И те и другие буфера могут выталкиваться во внешнюю память. Проблема состоит в выработке некоторой общей политики выталкивания, которая обеспечивала бы возможность восстановления состояния базы данных после сбоев.

Проблема не возникает при индивидуальных откатах транзакций, поскольку в этих случаях содержимое оперативной памяти не утрачено, и можно пользоваться содержимым как буфера журнала, так и буферов страниц базы данных. Но если произошел мягкий сбой, и содержимое буферов утрачено, для проведения восстановления базы данных необходимо иметь некоторое согласованное состояние журнала и базы данных во внешней памяти.

Основным принципом согласованной политики выталкивания буфера журнала и буферов страниц базы данных является то, что запись об изменении объекта базы данных должна попадать во внешнюю память журнала раньше, чем измененный объект оказывается во внешней памяти базы данных. Соответствующий протокол журнализации (и управления буферизацией) называется Write Ahead Log (WAL) - "пиши сначала в журнал", и состоит в том, что если требуется вытолкнуть во внешнюю память измененный объект базы данных, то перед этим нужно гарантировать выталкивание во внешнюю память журнала записи о его изменении.

Другими словами, если во внешней памяти базы данных находится некоторый объект базы данных, по отношению к которому выполнена операция модификации, то во внешней памяти журнала обязательно находится запись, соответствующая этой операции. Обратное неверно, т.е. если во внешней памяти журнале содержится запись о некоторой операции изменения объекта базы данных, то сам измененный объект может отсутствовать во внешней памяти базы данных.

Дополнительное условие на выталкивание буферов накладывается тем требованием, что каждая успешно завершившаяся транзакция должна быть реально зафиксирована во внешней памяти. Какой бы сбой не произошел, система должна быть в состоянии восстановить состояние базы данных, содержащее результаты всех зафиксированных к моменту сбоя транзакций.

Простым решением было бы выталкивание буфера журнала, за которым следует массовое выталкивание буферов страниц базы данных, изменявшихся данной транзакцией. Довольно часто так и делают, но это вызывает существенные накладные расходы при выполнении операции фиксации транзакции.

Оказывается, что минимальным (достаточным) требованием, гарантирующим возможность восстановления последнего согласованного состояния базы данных, является выталкивание при фиксации транзакции во внешнюю память журнала всех записей об изменении базы данных этой транзакцией. При этом последняя запись в журнал, производимая от имени данной транзакции, - специальная запись о конце транзакции.

Рассмотрим теперь, как можно выполнять операции восстановления базы данных в различных ситуациях, если в системе поддерживается общий для всех транзакций журнал с общей буферизацией записей, поддерживаемый в соответствии с протоколом WAL.

3. Индивидуальный откат транзакции

Для того чтобы можно было выполнить по общему журналу индивидуальный откат транзакции, все записи в журнале от данной транзакции связываются в обратный список. Началом списка для незакончившихся транзакций является запись о последнем изменении базы данных, произведенном данной транзакцией. Для закончившихся транзакций (индивидуальные откаты которых уже невозможны) началом списка является запись о конце транзакции, которая обязательно вытолкнута во внешнюю память журнала. Концом списка всегда служит первая запись об изменении базы данных, произведенном данной транзакцией. Обычно в каждой записи проставляется уникальный идентификатор транзакции, чтобы можно было восстановить прямой список записей об изменениях базы данных определенной транзакцией (такой список нельзя поддерживать явно по причине последовательной природы файла журнала).

Итак, индивидуальный откат транзакции (еще раз подчеркнем, что это возможно только для незакончившихся транзакций) выполняется следующим образом.

Выбирается очередная запись из списка данной транзакции.

Выполняется противоположная по смыслу операция: вместо операции INSERT выполняется соответствующая операция DELETE, вместо операции DELETE выполняется INSERT, и вместо прямой операции UPDATE обратная операция UPDATE; тем самым восстанавливающая предыдущее состояние объекта базы данных.

Любая из этих обратных операций также журнализуются. Собственно для индивидуального отката это не нужно, но при выполнении индивидуального отката транзакции может произойти мягкий сбой, при восстановлении после которого потребуется откатить такую транзакцию, для которой не полностью выполнен индивидуальный откат.

При успешном завершении отката в журнал заносится запись о конце транзакции. С точки зрения механизма журнализации такая транзакция является зафиксированной.

4. Восстановление после мягкого сбоя

К числу основных проблем восстановления после мягкого сбоя относится то, что одна логическая операция модификации базы данных может изменять несколько физических блоков базы данных, например страницу данных и несколько страниц индексов. Страницы базы данных буферизуются в оперативной памяти и выталкиваются независимо. Несмотря на применение протокола WAL, после мягкого сбоя набор страниц внешней памяти базы данных может оказаться несогласованным, т.е. часть страниц внешней памяти соответствует объекту до изменения, часть - после изменения. К такому состоянию объекта не применимы операции восстановления логического уровня.

Состояние внешней памяти базы данных называется физически согласованным, если наборы страниц всех объектов согласованы, т.е. соответствуют состоянию объекта либо после его изменения, либо до изменения.

Будем считать, что в журнале отмечаются точки физической согласованности базы данных - моменты времени, в которые во внешней памяти содержатся согласованные результаты операций, завершившихся до соответствующего момента времени, и отсутствуют результаты операций, которые не завершились, а буфер журнала вытолкнут во внешнюю память. Немного позже мы рассмотрим, как можно достичь физической согласованности. Назовем такие точки tlpc (time of last physical consistency).

Тогда к моменту мягкого сбоя возможны следующие состояния транзакций.

Предположим, что некоторым способом удалось восстановить внешнюю память базы данных к состоянию на момент времени tlpc (как это можно сделать - немного позже).

Возможны следующие ситуации (tf - момент сбоя):

Picture

Из чего следует.

Для транзакции T1 никаких действий производить не требуется. Она закончилась до момента tlpc, и все ее результаты отражены во внешней памяти базы данных.

Для транзакции T2 нужно повторно выполнить оставшуюся часть операций (redo). Действительно, во внешней памяти полностью отсутствуют следы операций, которые выполнялись в транзакции T2 после момента tlpc. Следовательно, повторная прямая интерпретация операций T2 корректна и приведет к логически согласованному состоянию базы данных (поскольку транзакция T2 успешно завершилась до момента мягкого сбоя, в журнале содержатся записи обо всех изменениях, произведенных этой транзакцией).

Для транзакции T3 нужно выполнить в обратном направлении первую часть операций (undo). Действительно, во внешней памяти базы данных полностью отсутствуют результаты операций T3, которые были выполнены после момента tlpc. С другой стороны, во внешней памяти гарантированно присутствуют результаты операций T3, которые были выполнены до момента tlpc. Следовательно, обратная интерпретация операций T3 корректна и приведет к согласованному состоянию базы данных (поскольку транзакция T3 не завершилась к моменту мягкого сбоя, при восстановлении необходимо устранить все последствия ее выполнения).

Для транзакции T4, которая успела начаться после момента tlpc и закончиться до момента мягкого сбоя, нужно выполнить полную повторную прямую интерпретацию операций (redo).

Наконец, для начавшейся после момента tlpc и не успевшей завершиться к моменту мягкого сбоя транзакции T5 никаких действий предпринимать не требуется. Результаты операций этой транзакции полностью отсутствуют во внешней памяти базы данных.

5. Физическая согласованность базы данных

Каким же образом можно обеспечить наличие точек физической согласованности базы данных, т.е. как восстановить состояние базы данных в момент tlpc? Для этого используются два основных подхода: подход, основанный на использовании теневого механизма, и подход, в котором применяется журнализация постраничных изменений базы данных.

При открытии файла таблица отображения номеров его логических блоков в адреса физических блоков внешней памяти считывается в оперативную память. При модификации любого блока файла во внешней памяти выделяется новый блок. При этом текущая таблица отображения (в оперативной памяти) изменяется, а теневая - сохраняется неизменной. Если во время работы с открытым файлом происходит сбой, во внешней памяти автоматически сохраняется состояние файла до его открытия. Для явного восстановления файла достаточно повторно считать в оперативную память теневую таблицу отображения.

В контексте базы данных теневой механизм используется следующим образом. Периодически выполняются операции установления точки физической согласованности базы данных (checkpoints в System R). Для этого все логические операции завершаются, все буферы оперативной памяти, содержимое которых не согласуется с содержимым соответствующих страниц внешней памяти, выталкиваются. Теневая таблица отображения файлов базы данных заменяется на текущую (правильнее сказать, текущая таблица отображения записывается на место теневой).

Восстановление к tlpc происходит мгновенно: текущая таблица отображения заменяется на теневую (при восстановлении просто считывается теневая таблица отображения). Все проблемы восстановления решаются, но за счет слишком большого перерасхода внешней памяти. В пределе может потребоваться вдвое больше внешней памяти, чем реально нужно для хранения базы данных. Теневой механизм - это надежное, но слишком грубое средство. Обеспечивается согласованное состояние внешней памяти в один общий для всех объектов момент времени. На самом деле достаточно иметь набор согласованных наборов страниц, каждому из которых может соответствовать свой набор времени.

Для достижения такого более слабого требования, наряду с логической журнализацией операций изменения базы данных, производится журнализация постраничных изменений. Первый этап восстановления после мягкого сбоя состоит в постраничном откате незакончившихся логических операций. Подобно тому, как это делается с логическими записями по отношению к транзакциям, последней записью о постраничных изменениях от одной логической операции является запись о конце операции. Для того чтобы распознать, нуждается ли страница внешней памяти базы данных в восстановлении, при выталкивании любой страницы из буфера в оперативную память в нее помещается идентификатор последней записи о постраничном изменении этой страницы. Имеются и другие технические нюансы.

В этом подходе имеются два поднаправления. В первом поднаправлении поддерживается общий журнал логических и страничных операций. Естественно, наличие двух видов записей, интерпретируемых абсолютно по-разному, усложняет структуру журнала. Кроме того, записи о постраничных изменениях, актуальность которых носит локальный характер, существенно (и не очень осмысленно) увеличивают журнал.

Поэтому все более популярным становится поддержание отдельного (короткого) журнала постраничных изменений. Такая техника применяется, например, в известном продукте Informix Online.

6. Восстановление после жесткого сбоя

Понятно, что для восстановления последнего согласованного состояния базы данных после жесткого сбоя журнала изменений базы данных явно недостаточно. Основой восстановления в этом случае являются журнал и архивная копия базы данных.

Восстановление начинается с обратного копирования базы данных из архивной копии. Затем для всех закончившихся транзакций выполняется redo, т.е. операции повторно выполняются в прямом смысле.

Более точно, происходит следующее.

По журналу в прямом направлении выполняются все операции.

Для транзакций, которые не закончились к моменту сбоя, выполняется откат.

На самом деле, поскольку жесткий сбой не сопровождается утратой буферов оперативной памяти, можно восстановить базу данных до такого уровня, чтобы можно было продолжить даже выполнение незакончившихся транзакций. Но обычно это не делается, потому что восстановление после жесткого сбоя - это достаточно длительный процесс.

Хотя к ведению журнала предъявляются особые требования по части надежности, в принципе, возможна и его утрата. Тогда единственным способом восстановления базы данных является возврат к архивной копии. Конечно, в этом случае не удастся получить последнее согласованное состояние базы данных, но это лучше, чем ничего.

Последний вопрос, который мы коротко рассмотрим, относится к производству архивных копий базы данных. Самый простой способ - архивировать базу данных при переполнении журнала. В журнале вводится так называемая "желтая зона", при достижении которой образование новых транзакций временно блокируется. Когда все транзакции закончатся, и следовательно, база данных придет в согласованное состояние, можно производить ее архивацию, после чего начинать заполнять журнал заново.

Можно выполнять архивацию базы данных реже, чем переполняется журнал. При переполнении журнала и окончании всех начатых транзакций можно архивировать сам журнал. Поскольку такой архивированный журнал, по сути дела, требуется только для воссоздания архивной копии базы данных, журнальная информация при архивации может быть существенно сжата.

Продолжение в следующем номере.


*) Продолжение. Начало см. СУБД # 1, # 2, # 3, # 4, 1995; # 1, # 2, 1996.


Ваше имя:  E-mail: 
Оценка интересности и/или полезности статьи:
интересно и/или полезно
мало интересно или полезно
вредная статья

Стиль изложения
читается легко
несколько трудна для чтения
очень трудно читать
Ваш комментарий:


 

<< ПРЕДЫДУЩАЯ СТАТЬЯ ] [ ОГЛАВЛЕНИЕ ] [ СЛЕДУЮЩАЯ СТАТЬЯ >>
Banners System