В этой части мы рассмотрим вопросы организации специального класса информационных приложений, ориентированных не на оперативную обработку транзакций (On-Line Transaction Processing - OLTP), а на оперативную аналитическую обработку (On-Line Analitical Processing - OLAP). У этих двух разновидностей систем принципиально разные задачи. Корпоративные информационные OLTP-системы создаются для того, чтобы способствовать повседневной деятельности корпорации, и опираются на актуальные для текущего момента данные. OLAP-системы служат для анализа деятельности корпорации или ее компонентов и прогнозирования будущего состояния. Для этого требуется использовать многочисленные накопленные данные о деятельности корпорации в прошлом, а также внешние источники данных, формирующие контекст, в котором работала корпорация.
Система оперативной аналитической обработки данных отличается от статической системы поддержки принятия решений (Decision Support System - DSS) тем, что OLAP-система позволяет аналитику динамически формировать класс вопросов, который требуется для решаемой им текущей аналитической задачи. DSS обеспечивает выдачу отчетов в соответствии с заранее сформулированными правилами. Для удовлетворения нового запроса нужно формально его описать, запрограммировать и только потом выполнить.
Тематика OLAP-систем очень широка и специальна. Мы не будем обсуждать соответствующие вопросы на глубоком уровне, а в основном (и тоже не очень глубоко) сосредоточимся на проблемах обеспечения OLAP-системы данными. Мы будем говорить о складах данных (Datawarehouse).
Эта часть курса главным образом основана на статьях А. Сахарова, опубликованных в журнале "СУБД" (номера 3 и 4 за 1996 г.), а также на книге Harjinder Gill и Prakash Rao "The Official Guide to Data Warehousing" (Que Corporation, 1996 г.).
Любая крупная и давно существующая корпорация обладает несколькими базами данных, относящимися к разным видам деятельности. Данные могут иметь разные представления, а иногда могут быть даже несогласованными (например, из-за ошибки ввода в одну из баз данных). Это нехорошо даже для OLTP-систем (мы уже говорили о все более часто возникающих потребностях в интеграции корпоративных информационных OLTP-систем) и в принципе непригодно для OLAP-систем, которые должны обрабатывать общие исторические согласованные корпоративные данные. Более того, для оперативной аналитической обработки требуется привлечение внешних источников данных, которые тем более могут обладать разными форматами и требовать согласования. Видимо, на подобных рассуждениях и возникла концепция склада данных как предметно-ориентированного, интегрированного, неизменчивого, поддерживающего хронологию набора данных, организованного для целей поддержки управления.
Обратите внимание, что подход построения склада данных для интеграции неоднородных источников данных принципиально отличается от подхода динамической интеграции разнородных баз данных. В случае склада данных реально строится новое крупномасштабное хранилище, управление данными в котором происходит, вообще говоря, по другим правилам, нежели в исходных оперативных базах данных.
Итак, в основе концепции склада данных лежат две основные идеи:
Остановимся на некоторых проблемах реализации складов данных:
Склад данных практически никогда не создается на пустом месте. Почти всегда конечное решение будет разнородным, т.е. в нем будут использоваться автономно разработанные программные средства. Прежде всего это касается формирования интегрированного согласованного набора данных, которые могут поступать из разнородных баз данных, электронных архивов, публичных и коммерческих электронных каталогов, справочников, статистических сборников. При построении склада данных приходится решать задачу построения единой, согласованно функционирующей информационной системы на основе неоднородных программных средств и решений. При выборе средств реализации склада данных приходится учитывать множество факторов, включающих уровень совместимости различных программных компонентов, легкость их освоения и использования, эффективность функционирования и т.д.
В концепции склада данных предопределено то, что операционная аналитическая обработка может выполняться в любом узле сети независимо от места расположения основного хранилища. Хотя при аналитической обработке данные только читаются, и потребность в синхронизации отсутствует, для достижения эффективности необходимо поддерживать репликацию данных в разных узлах сети. (На самом деле, все не так просто. Одним из требований к складам данных является то, чтобы свежая информация поступала на склад как можно быстрее. Т.е. потенциально любая модификация оперативной базы данных может инициировать добавление данных к складу данных, а тогда потребуется обновить и все реплики, для чего синхронизация все-таки нужна.)
Собранная вместе согласованная информация об истории развития корпорации, ее успехах и неудачах, о взаимоотношениях с поставщиками и заказчиками, об истории и состоянии рынка дает возможность анализа прошлой и текущей деятельности корпорации и построения прогнозов для будущего. Эта информация настолько ценна для корпорации, что нельзя допустить возможности ее утечки (на самом деле, если склад данных одной корпорации попадет в руки аналитиков другой корпорации, то все аналитические прогнозы первой корпорации сразу станут неверными). В системах, основанных на складах данных, оказывается недостаточной защита данных в стиле языка SQL, которую обеспечивают обычные коммерческие СУБД (этот уровень защиты соответствует классу C2 в соответствии с классификацией Оранжевой Книги Министерства обороны США). Для обеспечения должного уровня защиты доступ к данным должен контролироваться не только на уровне таблиц и их столбцов, но и на уровне отдельных строк (это уже соответствует классу B1 Оранжевой Книги). Приходится также решать вопросы аутентификации пользователей, защиты данных при их перемещении в склад данных из оперативных баз данных и внешних источников, защиты данных при их передаче по сети.
Если роль метаданных (обычно содержащихся в таблицах-каталогах) в оперативных информационных системах достаточно ограничена, то для OLAP-систем наличие развитых метаданных и средств их предоставления конечным пользователям является одним из основных условий успешной реализации. Например, прежде, чем менеджер корпорации задаст системе свой вопрос, он должен понять, какая информация имеется, насколько она актуальна, можно ли ей доверять, сколько времени может занять формирование ответа и т.д. Для пользователя OLAP-системы требуются метаданные, по крайней мере, следующих типов:
Уже сейчас известны примеры складов данных, содержащих терабайты информации. По данным консалтинговой компании Meta Group, около половины корпораций, использующих или планирующих использовать склады данных, предполагает довести их объем до сотен гигабайт. Проблемой таких больших хранилищ является то, что накладные расходы на внешнюю память возрастают нелинейно при возрастании объема хранилища. Исследования, проведенные на основе тестового набора TPC-D, показали, что для баз данных объемом в 100 гигабайт потребуется внешняя память объемом в 4.87 раза большая, чем нужно собственно для полезных данных. При дальнейшем росте баз данных этот коэффициент увеличивается.
Последнее, на чем мы остановимся в этом разделе, - это рынки данных (Data Mart; кстати, ведущий специалист Московского отделения компании Informix Ховард Залкин предпочитает называть их "лавками данных"). Рынок данных по своему исходному определению - это набор тематически связанных баз данных, которые содержат информацию, относящуюся к отдельным аспектам деятельности корпорации. По сути дела, рынок данных - это облегченный вариант склада данных, содержащий только тематически объединенные данные. Целевая база данных максимально приближена к конечному пользователю и может содержать тематически ориентированные агрегатные данные. Рынок данных, естественно, существенно меньше по объему, чем корпоративный склад данных, и для его реализации не требуется особо мощная вычислительная техника.
В последнее время все более популярной становится идея совместить концепции склада и рынка данных в одной реализации и использовать склад данных в качестве единственного источника интегрированных данных для всех рынков данных. Тогда естественной становится такая трехуровневая организация OLAP-системы:
На первом уровне реализуется корпоративный склад данных на основе одной из развитых современных реляционных СУБД. Это хранилище интегрированных в основном детализированных данных. Реляционные СУБД обеспечивают эффективное хранение и управление данными очень большого объема, но не слишком хорошо соответствуют потребностям OLAP-систем, в частности, в связи с требованием многомерного представления данных.
На втором уровне поддерживаются рынки данных на основе многомерной системы управления базами данных (примером такой системы является Oracle Express Server). В этом курсе мы не рассматриваем особенности организации многомерных СУБД (это отдельная большая тема), но заметим, что такие СУБД почти идеально подходят для целей разработки OLAP-систем, но пока не позволяют хранить сверхбольшие объемы данных (предельный размер многомерной базы данных составляет 10-20 гигабайт). В данном случае это и не требуется, поскольку речь идет о рынках данных. Заметим, что рынок данных не обязательно должен быть полностью сформирован. Он может содержать ссылки на склад данных и добирать оттуда информацию по мере поступления запросов. Конечно, это несколько увеличивает время отклика, но зато снимает проблему ограниченного объема многомерной базы данных.
Наконец, на третьем уровне находятся клиентские рабочие места конечных пользователей, на которых устанавливаются средства оперативного анализа данных.
В этом разделе мы коротко охарактеризуем продукты ведущих поставщиков, имеющие связь с технологией складов данных.
6.2.1. Компания IBM
Решение компании IBM называется A Data Warehouse Plus. Целью компании является обеспечение интегрированного набора программных продуктов и сервисов, основанных на единой архитектуре. Основой складов данных является семейство СУБД DB2. Преимуществом IBM является то, что данные, которые нужно извлечь из оперативной базы данных и поместить в склад данных, находятся в системах IBM. Поэтому естественная тесная интеграция программных продуктов.
Предлагаются три решения для складов данных:
6.2.2. Oracle
Решение компании Oracle в области складов данных основывается на двух факторах: широкий ассортимент продуктов самой компании и деятельность партнеров в рамках программы Warehouse Technology Initiative. Возможности Oracle в области складов данных базируются на следующих составляющих:
6.2.3. Hewlett Packard
Работы, связанные со складами данных, выполняются в рамках программы OpenWarehouse. Выполнение этой программы должно обеспечить возможность построения складов данных на основе мощных компьютеров HP, аппаратуры других производителей и программных компонентов. Основой подхода HP являются Unix-платформы и программный продукт Intelligent Warehouse, который предназначен для управления складами данных. Основа построения складов данных, предлагаемая HP, оставляет свободу выбора реляционной СУБД, средств реинжиниринга и т.д.
6.2.4. Sybase
Стратегия компании в области складов данных основывается на разработанной ей архитектуре Warehouse WORKS. В основе подхода находится реляционная СУБД Sybase System 11, средство для подключения и доступа к базам данных OmniCONNECT и средство разработки приложений PowerBuilder. Компания продолжает совершенствовать свою СУБД для лучшего удовлетворения потребностей складов данных (например, введена побитная индексация).
6.2.5. Informix Software
Стратегия компании в отношение складов данных направлена на расширение рынка для ее продукта On-Line Dinamic Parallel Server. Предлагаемая архитектура склада данных базируется на четырех технологиях: реляционные базы данных, программном обеспечении для управления складом данных, средствах доступа к данным и платформе открытых систем. Три последние компонента разрабатываются партнерами компании. После выхода Универсального Сервера, основанного на объектно-реляционном подходе, можно ожидать, что и он будет использоваться для построения складов данных.
6.2.6. AT&T GIS
Решение компании направлено на решение проблем корпораций, у которых одинаково сильны потребности и в системах поддержки принятия решений, и в системах оперативной аналитической обработки данных. Предлагаемая архитектура называется Enterprise Information Factory и основывается на опыте использования системы управления базами данных Teradata и связанных с ней методах параллельной обработки.
6.2.7. SAS Institute
Компания считает себя поставщиком полного решения для организации склада данных. Подход основан на следующем:
6.2.8. Software AG
Деятельность компании в области складов данных происходит в рамках программы Open Data Warehouse Initiative. Программа базируется на основных продуктах компании ADABAS и Natural 4GL, собственных и приобретенных средствах извлечения и анализа данных, средстве управления складом данных SourcePoint. SourcePoint позволяет автоматизировать процесс извлечения и пересылки данных, а также их загрузки в склад данных.
Существует еще целый ряд компаний, которые прямо или косвенно связаны с технологией складов данных, но мы ограничимся перечисленными, поскольку их продукты и подходы кажутся наиболее продвинутыми.
Назад | Содержание | Вперед