2.1. ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

 

В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой. Ее основание равно 10, т.к. запись чисел производится с помощью 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая 3 означает 3 сотни, вторая – 3 десятка, третья – 3 единицы (значение каждой цифры зависит от того места, которое эта цифра занимает).

Для записи чисел в позиционной системе с основанием n нужно иметь алфавит из n цифр. Обычно для этого при n<10 используют n первых арабских цифр, а при n>10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

 

Основание

Название

Алфавит

n=2

двоичная

0 1

n=3

троичная

0 1 2

n=4

четверичная

0 1 2 3

n=5

пятеричная

0 1 2 3 4

n=6

шестеричная

0 1 2 3 4 5

n=7

семеричная

0 1 2 3 4 5 6

n=8

восьмеричная

0 1 2 3 4 5 6 7

n=10

десятичная

0 1 2 3 4 5 6 7 8 9

n=16

шестнадцатеричная

0 1 2 3 4 5 6 7 8 9 A B C D E F

 

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу: 1011012, 36718, 3B8F16

Запишем первые 17 чисел в двоичной и восьмеричной системах счисления:

 

Основание системы счисления

10

2

8

0

0

0

1

1

1

2

10

2

3

11

3

4

100

4

5

101

5

6

110

6

7

111

7

8

1000

10

9

1001

11

10

1010

12

11

1011

13

12

1100

14

13

1101

15

14

1110

16

15

1111

17

16

10000

20