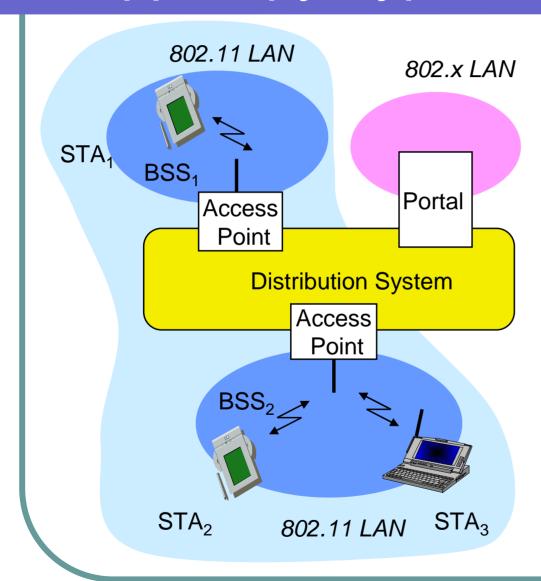

Стандарты беспроводных локальных сетей (WLAN) 802.11


- Прототипы имели следующие характеристики:
 - Рабочие частоты 2.4 2.4835 ГГц (ISM-диапазон)
 - 4FSK/2FSK (Frequency Shift Keying), FHSS модуляции (FHSS Frequency Hopping Spread Spectrum, расширение спектра скачкообразной сменой частоты)
 - Мощность передатчика 10мВт-1Вт
 - Пропускная способность сети 2 Мбит/с
- Стандарты группы IEEE 802.11:
 - работа в нелицензируемых (в США) частотных диапазонах 2,4-2,4835 (ISM-диапазон); 5,15-5,35 и 5,725—5,825 ГГц (UNII-диапазоны). В России требуется оформление.
 - 802.11b (2,4 ГГц, 11 Мбит/с), на физическом уровне DSSS (Direct Sequence Spread Spectrum)
 - 802.11a(5..6 ГГц, 54 Мбит/с), на физическом уровне OFDM (Orthogonal Frequency Division Multiplexing)
 - 802.11g (2,4ГГц, 54 Мбит/с), на физическом уровне метод ОFDМ

Протоколы беспроводных сетей MACA MACAW

- Основой для серии стандартов для беспроводных сетей IEEE 802.11 послужил протокол MACA (Multiple Access with Collision Avoidance) 1990
- CSMA/CA реализуется через т.н. «распределенную функцию координации»
 DCF (Distributed Coordination Function)
- I Дополнительно могут использоваться методы MAC: точечная функция координации PCF (Point Coordination Function); кадры готовности RTS/CTS
- Контроль несущей осуществляется с помощью двух методов: проверки уровня принимаемого сигнала и виртуальной функции контроля несущей, вектора распределения сети NAV (Network Allocation Vector)

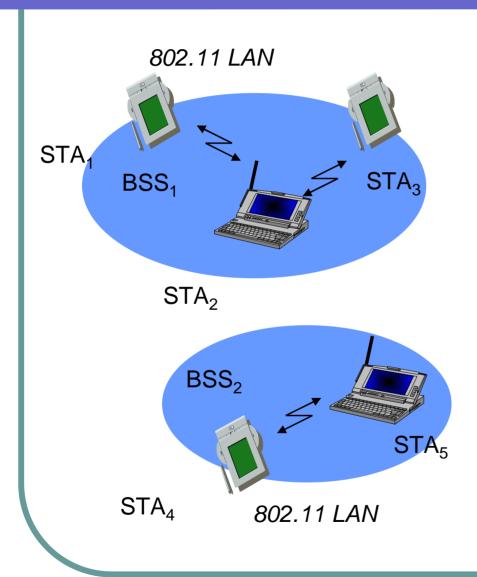
802.11 — Архитектура «инфраструктурной» сети

Station (STA)

- терминал с доступом к среде и точке доступа (Access Point)
- I Basic Service Set (BSS) или ESS
 - группа станций, использующая один частотный диапазон, сота.

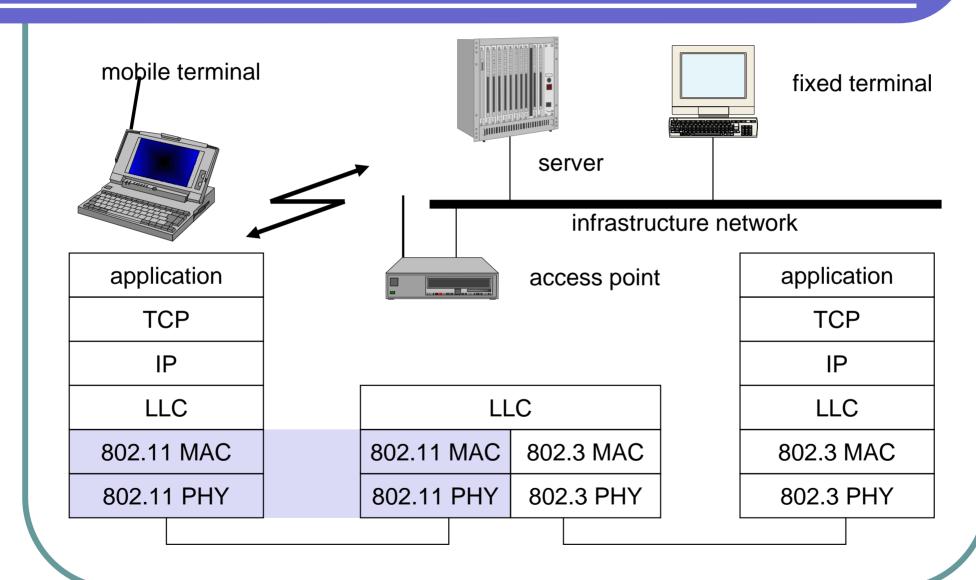
I Access Point

станция связанная с LAN и с распределительной системой. Базовая станция.


Portal

мост в другую беспроводную сеть

Distribution System


коммуникационная сеть, интегрирующая все средства в одну логическую сеть

802.11 - Архитектура «ad-hoc» сети

- Прямое соединение в непосредственной близости:
 - Station (STA)
 - терминал с доступом к среде и точке доступа (Access Point)
 - Basic Service Set (BSS) или IBSS
 - группа станций,
 использующая один
 частотный диапазон

Взаимодействие уровней в IEEE802.11

802.11 PHY

- метод частотных скачков, FHSS Frequency Hopping Spread Spectrum (исходный для 802.11 способ)
 - 79 каналов по 1 МГц
 - FSK Frequency Shift Keying 2-уровневая (1Мб/с) и 4-уровневая (2Мб/с)
- метод прямой последовательности, DSSS Direct Sequence Spread Spectrum
 - PSK Frequency Shift Keying 2-уровневая (1Мб/с) и 4-уровневая (2Мб/с)
 - 11-ти битная последовательность Баркера
 - 14 частично перекрывающихся каналов
- Инфракрасный диапазон
 - ненаправленный (diffuse IR) сигнал
 - 1 и 2 Мб/с
 - <u>1 10м</u>

См. также http://www.cs.vsu.ru/~kas/doc/infonets/infonets08_2.pdf

802.11 PHY

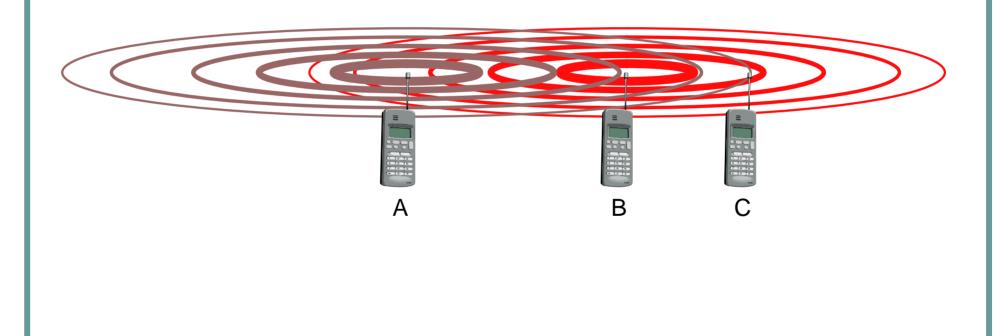
- предусмотрены различные структуры для нисходящих каналов "точка - много точек" и восходящих каналов "много точек – точка"
- при передаче в восходящем направлении используется схема множественного доступа с временным уплотнением (TDMA), дополненная алгоритмом выделения полосы пропускания по требованию (Demand Assignment Multiple Access, DAMA). Комбинация DAMA-TDMA обеспечивает динамическое выделение временных слотов отдельным логическим каналам.
- Пля передачи трафика в нисходящем направлении предусмотрено два режима: один рассчитан на транспортировку непрерывных потоков (аудио и видео), а другой трафика переменной интенсивности (IP-пакеты). В первом случае для доступа к логическому каналу используется алгоритм временного мультиплексирования (TDM), во втором случае применяется схема DAMA-TDMA.

См. также http://www.cs.vsu.ru/~kas/doc/infonets/infonets08_2.pdf

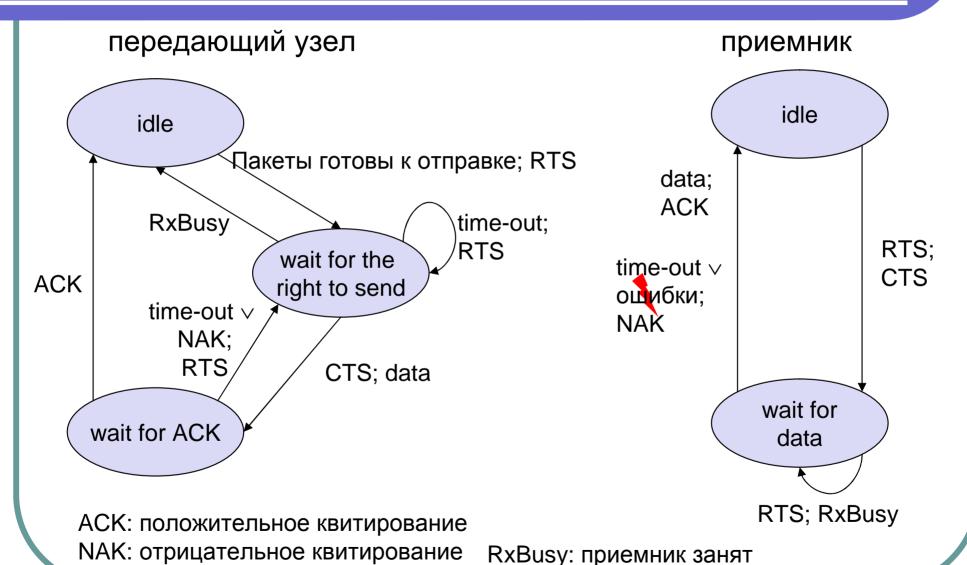
Беспроводные коммуникации для персональных компьютерных сетей (пикосетей)

- PAN Personal Area Network
- Рабочая группа 802.15 IEEE, проводит открытую стандартизацию систем беспроводных коммуникаций для PAN
- I IEEE 802.15.1, Bluetooth
- IEEE 802.15.3, UWB ultra-wideband, использование сверхширокополсных сигналов, см.:

http://www.cs.vsu.ru/~kas/doc/infonets/infonets08_3.pdf


IEEE 802.15.1, Bluetooth

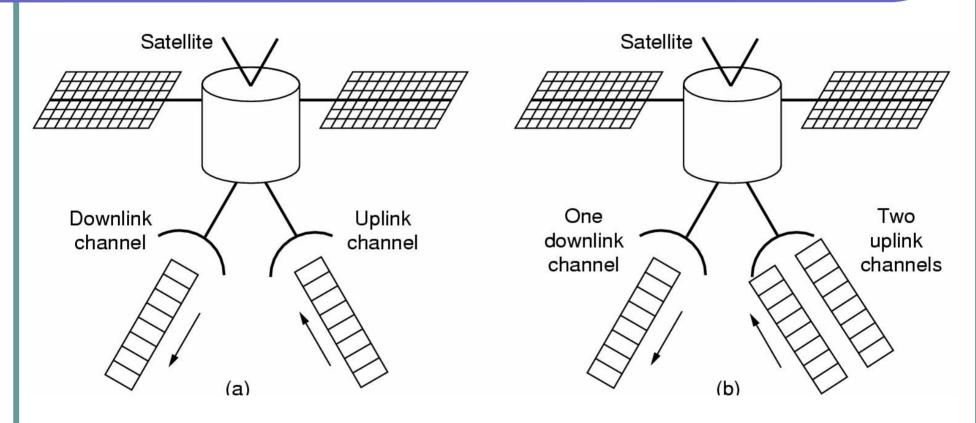
- Используемые частоты: 2,4465—2,4835 ГГц нижний (2,45 ГГц) диапазон ISM (industrial, scientific, medical), 8 каналов
- Максимальные скорости: 723,2 кбит/с в асинхронном режиме; 433,9 кбит/с в полнодуплексном
- Изначально дальность действия радио-интерфейса определялась в 10м, (в границах одной комнаты). В настоящее время спецификациями Bluetooth определена и вторая зона - 100 м (для покрытия стандартного дома или вне его).
- Используются сигналы с расширением спектра путем скачкообразной перестройки частоты (FHSS) по псевдослучайному закону со скоростью 1600 перкл./с


MAC 802.11

- Проблемы использования CSMA/CD в беспроводных сетях
 - затухание сигнала, пакет может быть не принят даже при отсутствии коллизии
 - CD может не работать, т.к. отправитель может не слышать коллизии
 - CS может также не работать, если терминал «скрыт», т.е. не слышит передачи

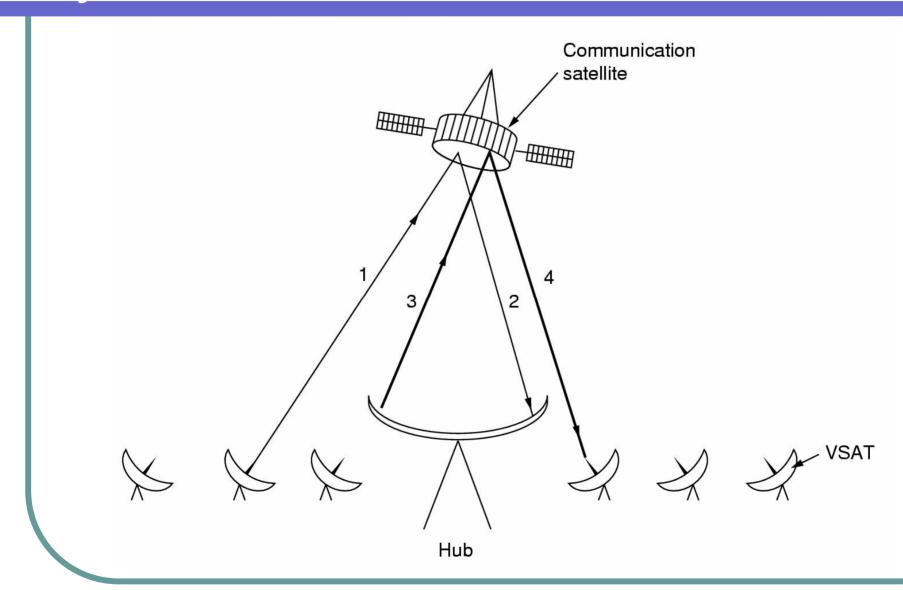
Скрытые терминалы

MAC 802.11 (DFWMAC) с использованием кадров готовности


Беспроводная «последняя миля» Wireless Local Loop, WLL. 802.16

- IEEE 802.16 представляет собой рассчитанную на внедрение в городских беспроводных сетях технологию, которая обеспечивает беспроводное подключение к Интернету через точки доступа стандарта 802.11
- IEEE 802.16.1, определяет радиоинтерфейс для систем, работающих на частотах от 10 до 66 ГГц;
- IEEE 802.16.2, регламентирует вопросы совместимости разных систем широкополосного беспроводного доступа;
- IEEE 802.16.3, определяет радиоинтерфейс для систем, работающих в лицензируемых диапазонах от 2 до 11 ГГц
- http://grouper.ieee.org/groups/802/16/

Спутниковые сети, распределение ресурсов


- TDM Time Division Multiplexing (временные слоты)
- I FDM Frequency Division Multiplexing (частотные поддиапазоны)
- I CDMA Code Division Multiple Access (кодовое разделение в системах с множественным доступом)

Приемно-передающие тракты спутниковых систем

Одна система антенна—преобразователь—антенна называется **транспондер** (ствол). Для современных геостационарных спутников число транспондеров порядка 20-30. Кроме того, на одной позиции геостационарной орбиты может находится несколько спутников.

Приемно-передающие тракты спутниковых систем

Спутниковые частотные диапазоны

Диапазон	Нисходящие сигналы	Восходящие сигналы	Ширина полосы	Проблемы
L	1,5 ГГц	1,6 ГГц	15 МГц	Узкая полоса; переполнен
S	1,9 ГГц	2,2 ГГц	70 МГц	Узкая полоса; переполнен
С	4,0 ГГц	6,0 ГГц	500 МГц	Наземная интерференция
Ku	11 ГГц	14 ГГц	500 МГц	Дождь
Ka	20 ГГц	30 ГГц	3500 МГц	Дождь, стоимость оборудования

Затухание в атмосфере без учета дождя на линии спутник-Земля

Угол места	атмос	кание в идеа сфере, дБ апазон (Назв		Затухание в атмосфере, с учетом паров воды 5 г/м3, дБ редняя частота диапазона ГГц)		
	C, 4	Ku, 11-12		C, 4	Ku, 11-12	Ka, 18
0	1,54	2.3	8,0	2,0	3,3	9,7
5	0,4	0,7	2,0	0,7	1,1	2,8
10	0,2	0,38	1,0	0,5	0,7	1,2
15	0,15	0,28	0.75	0,2	0,35	1,0
20	0,1	0,2	0,6	0,12	0,25	0,7
25	0,05	0,15	0,48	0,1	0,21	0,6
30	-	0,08	0,37	0,08	0,13	0,35
45	-	0,05	0,25	0,07	0,11	0,3

Здесь и далее использованы материалы журнала «Спутниковая связь», Изд-во ООО Гротек.

Шумы атмосферы без учета дождя (Татм, К)

	Идеальная атмосфера, К			Атмосфера с учетом паров воды 5 г/м3, К		
Угол места	<u> </u>	Диапазон			71010; 13	
	С	Ku	Ka	С	Ku	Ka
0	78	107	234	96	138	256
5	23	39	96	39	58	124
10	12	22	53	28	39	63
15	9	16	41	12	20	53
20	6	12	34	7	15	39
25	3	9	27	6	13	34
30	-	5	23	5	8	20
45	-	3	15	4	7	17

Примечание. При определении Татм значение термодинамической температуры на территории СНГ принято равным 260 К.

Влияние погодных условий на ВЕК при передачи данных

Рекомендации ITU (сокращенные данные) для спутниковых каналов Intelsat и Eutelsat:

Вероятность ошибки	Intelsat (Supe Eutelsat (Hig	erIBS) hGradeSMS)	Intelsat (BasisIBS), Eutelsat (StandartSMS)		
на бит, более	Рм % Рг, %		Рм, %	Рг, %	
10 ⁻⁷	10	4	-	-	
10 ⁻⁶	2	0,64	3	1	
10 ⁻³	0,2	0,04	-	-	

Примечание 1. Вероятность ошибки 10-8 гарантируется только в ясную погоду.

Примечание 2. Рм и Рг – отношения наблюдаемой продолжительности дождей заданной интенсивности к периодам в 1 месяц и один год.

Распределение емкости КГ спутников связи и вещания

Диапазон частот	В мире			В России		
	1998	2001	2004	1998	2001	2004
С	40	35	30	95	80	50
Ku	59	64	53	5	20	50
Ka	1	1	17	ı	-	?

Первые в СССР геостационарные спутники связи и вещания и современные им зарубежные спутники

Параметры	Радуга	Горизонт	Intelsat-4	Intelsat-4A
Срок службы, лет	3	3	5	7
Рабочий диапазон	С	C/Ku/L	С	С
Число стволов	6	6/1/1	12	24

Действующие спутники "Экспресс", "Горизонт" и "Ямал"

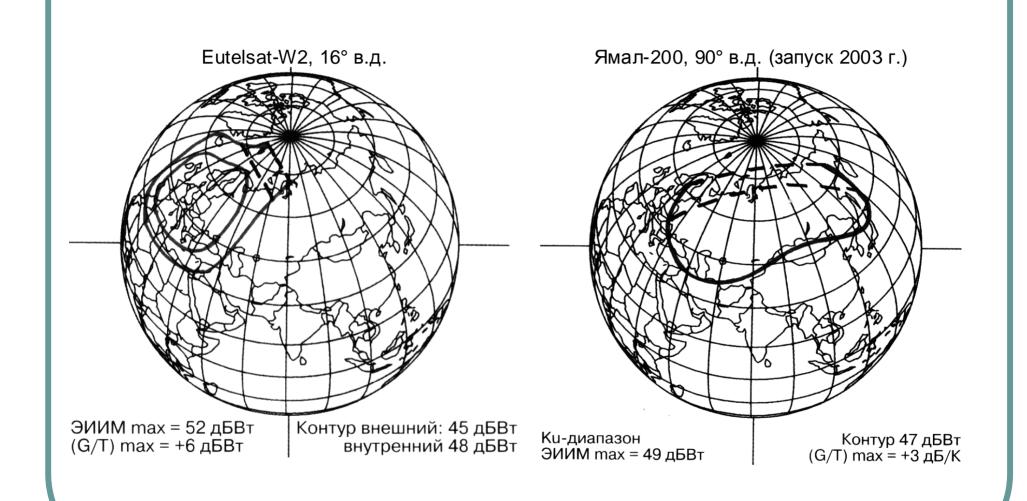
Название КА	Точка стояния	Дата запуска	Принадлежность	Примечание
Горизонт-37	14° з.д.	15.07.1992	ФГУП КС	С-диапазон, 6 стволов по 34 МГц
Экспресс-А, № 3 (Экспресс-ЗА)	11°з.д.	23.06.2000	ФГУП КС	С-диапазон, 11 стволов по 36 МГц, 1 ствол 40 МГц; Ки-диапазон, 5 стволов по 36 МГц
Стационар-12 (Горизонт-43)	40° в.д.	25.01.1996	ФГУП КС	С-диапазон, 6 стволов по 34 МГц
Стационар-5 (Горизонт-44)	53° в.д.	25.05.1996	ФГУП КС	С-диапазон, 6 стволов по 34 МГц
Экспресс-А, № 2 (Экспресс-бА)	80° в.д.	12.03.2000	ФГУП КС	С-диапазон, 11 стволов по 36 МГц, 1 ствол 40 МГц; Ки-диапазон, 5 стволов по 36 МГц
Ямал-100	90° в.д.	06.09.1999	ОАО "Газком"	С-диапазон, 10 стволов по 36 МГц
Стационар-6 (Горизонт-40)	96,5° в.д.	29.10.1993	ФГУП КС	С-диапазон, 6 стволов по 34 МГц
Экран-М, №18	99° в.д.	07.04.2001	ФГУП КС	1 активный ствол, 770 МГц
Экспресс-9	103°в.д.	26.09.1996	ФГУП КС	С-диапазон, 10 стволов по 34 МГц
Стационар-7 (Горизонт-36)	140° в.д.	02.04.1992	ФГУП КС	С-диапазон, 6 стволов по 34 МГц
Стационар-16 (Горизонт-45)	145° в.д.	07.06.2000	ФГУП КС	С-диапазон, 6 стволов по 34 МГц

по состоянию на октябрь 2001 г.

Сравнительные данные зарубежных и отечественных спутников

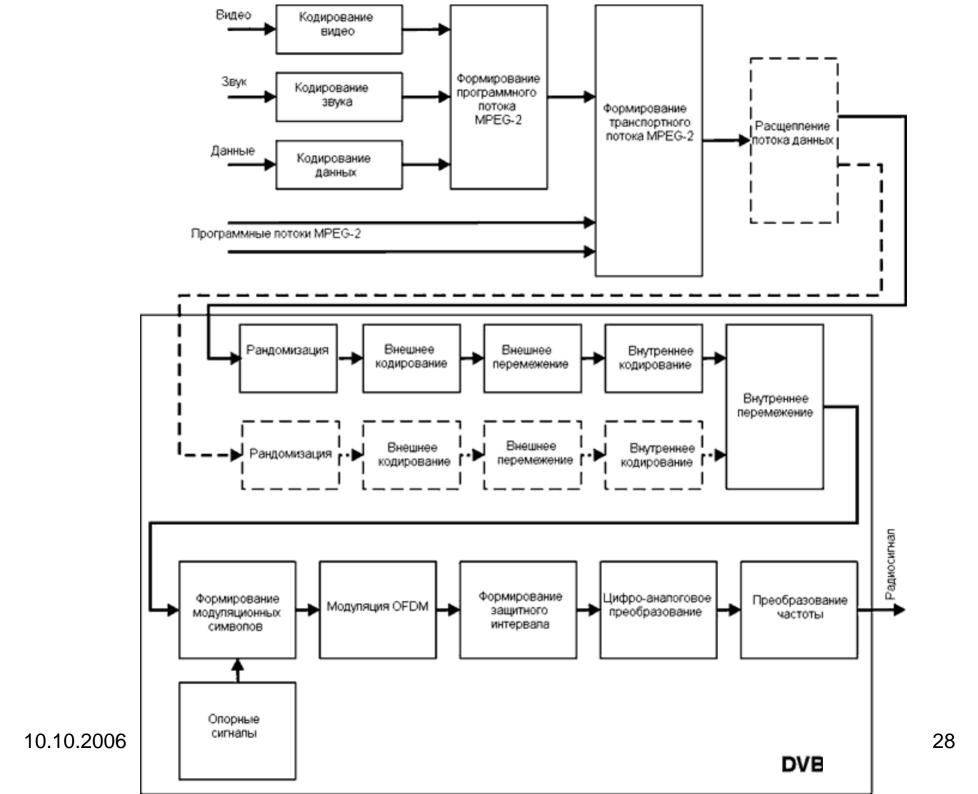
Параметр	Intelsat-7	Eutelsat-W2, Eutelsat -W3	Intelsat-9	Экспресс-АМ (80° в.д.)		
Год запуска первого спутника серии	1993	1998	2001	2003		
Срок службы, лет	10,9	12	13	12		
Масса спутника (сухая), кг	1470	1500*	1700*	Н.Д.		
Мощность солнечных батарей в конце срока службы, Вт	3851	5840	7000*	6000		
Масса полезной нагрузки, кг	442	260 (без антенн)	560*	570		
Потребление полезной нагрузки, Вт	2670	4100	5300*	4200		
Число активных стволов: С-диапазон	26	-	44	10		
Ки-диапазон	10	24	12	14		
ЭИИМ в основной рабочей зоне, дБВт: С-диапазон	35-40	-	35-45	35-42		
Ки-диапазон	45-49	47-53	47-53	45		
Эквивалентная рабочая полоса частот, МГц: С-диапазон	1512	-	2596	436		
Ки-диапазон	720	1692	792	756		
Примечание * Приблизительные данные.						

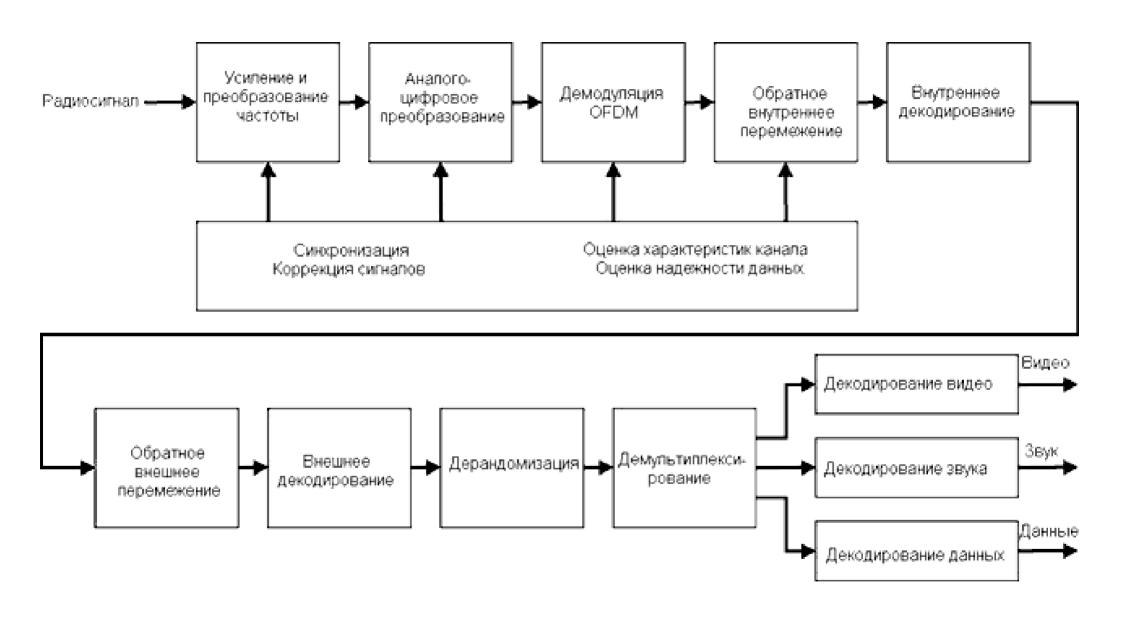
Параметры полезной нагрузки спутников Eutelsat и SeSat


Параметры	Eutelsat-2	Eutelsat-W	SeSat	
Рабочий диапазон частот, ГГц:	10,95-11,2	10,95-11,7	10,95-11,2	
- ИСЗ-Земля	11,45-11,7	-	11,45-11,7	
- VICO-Selving	12,5-12,75	12,5-12,75	12,5-12,75	
- Земля-ИСЗ	14-14,5	13-13,25 13,75-14	13,75-14	
Число стволов	16	24	18	
Полоса частот ствола, МГц	36/72*	36/72*	72	
Мощность передатчика, Вт	50	90	95	
Максимальный ЭКИМ, дБВт:	49 (Widebiam)	49 (фиксиров.)	48 (фиксиров.)	
- широкий луч	49 (Widebiaiii)	тэ (фиксиров.)	40 (фиксиров.)	
- узкий луч	53 (Syperbiam)	53 (перенацелив.)	50-51 (перенацелив.)	
Уровень ОД в максимуме, дБ/К: - широкий луч	н.д.	н.д.	+4 (фиксиров.)	
- узкий луч	Н.Д.	Н.Д.	+6 (перенацелив.)	
Поляризация	линейная	линейная	линейная	
			11450,35	
Частоты маяка (телеметрия), МГц	Н.Д.	Н.Д.	12501	
			11199,5	

Примечания: * для серии Eutelsat-2 - 9 стволов по 72 МГц, в Eutelsat-W4 все стволы по 33 МГц, в Eutelsat-W3 и W2 21 ствол по 36 МГц и 13 стволов по 72 МГц, Eutelsat-W1R все стволы по 72 МГц.

Стоимость изготовления и запуска спутников Eutelsat


Контракт	Стоимость млн дол.
Изготовление спутника - серии Eutelsat-2	50
Изготовление спутника - серии Eutelsat-W	115
Запуск спутника серии Eutelsat-2	65
Создание центров управления и мониторинга для Eutels at-2	10


Рабочие зоны спутников

Европейский стандарт DVB (Digital Video Broadcasting)

- Стандарт определяет
 - структуру передаваемого потока данных
 - систему канального кодирования и модуляции для мультипрограммных служб телевидения

