Курс лекций по дисциплине "Системы искусственного интеллекта"


Лекции 7-8: Экспертные системы


Назначение Экспертных Систем
 
Структура Экспертных Систем
 
Этапы разработки экспертных систем
 
Интерфейс с конечным пользователем
 
Представление Знаний В ЭС
 
Уровни Представления И Уровни Детальности
 
Организация Знаний В Рабочей Системе
 
Организация Знаний В Базе Данных
 
Методы Поиска Решений В Экспертных Системах
 
Инструментальный Комплекс Для Создания Статических Экспертных Систем (На Примере Интегрированного Комплекса Эко)
 
Средства Представления Знаний И Стратегии Управления
 
Инструментальный комплекс для создания экспертных систем реального времени (на примере интегрированной среды g2-gensym corp., Сша)

Назначение экспертных систем

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта-человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин "инженерия знаний", введенный Е.Фейгенбаумом как "привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов".

Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний (в дальнейшем будем использовать их как синонимы), получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

 технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект;

 технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений;

высокая стоимость сопровождения сложных систем, которая часто в несколько раз превосходит стоимость их разработки; низкий уровень повторной используемости программ и т.п.;

 объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей "прозрачности" приложения (например, знания хранятся на ограниченном ЕЯ, что не требует комментариев к знаниям, упрощает обучение и сопровождение); лучшей графики; интерфейса и взаимодействия.

По мнению ведущих специалистов , в недалекой перспективе ЭС найдут следующее применение:

 ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;

 технология ЭС, получившая коммерческое распространение, обеспечит революционный прорыв в интеграции приложений из готовых интеллектуально-взаимодействующих модулей.

ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач.

Неформализованные задачи обычно обладают следующими особенностями:

 ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных;

 ошибочностью, неоднозначностью, неполнотой и противоречивостью знаний о проблемной области и решаемой задаче;

 большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;

 динамически изменяющимися данными и знаниями.

Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс задач. Многие специалисты считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.

Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).

Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление ) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.

Коммерческие успехи к фирмам-разработчикам систем искусственного интеллекта (СИИ) пришли не сразу. На протяжении 1960 - 1985 гг. успехи ИИ касались в основном исследовательских разработок, которые демонстрировали пригодность СИИ для практического использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988 - 1990 гг.), в первую очередь ЭС, а в последние годы системы, воспринимающие естественный язык (ЕЯ-системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.

Следует обратить внимание на то, что некоторые специалисты (как правило, специалисты в программировании, а не в ИИ) продолжают утверждать, что ЭС и СИИ не оправдали возлагавшихся на них ожиданий и умерли. Причины таких заблуждений состоят в том, что эти авторы рассматривали ЭС как альтернативу традиционному программированию, т.е. они исходили из того, что ЭС в одиночестве (в изоляции от других программных средств) полностью решают задачи, стоящие перед заказчиком. Надо отметить, что на заре появления ЭС специфика используемых в них языков, технологии разработки приложений и используемого оборудования (например, Lisp-машины) давала основания предполагать, что интеграция ЭС с традиционными, программными системами является сложной и, возможно, невыполнимой задачей при ограничениях, накладываемых реальными приложениями. Однако в настоящее время коммерческие инструментальные средства (ИС) для создания ЭС разрабатываются в полном соответствии с современными технологическими тенденциями традиционного программирования, что снимает проблемы, возникающие при создании интегрированных приложений.

Причины, приведшие СИИ к коммерческому успеху, следующие.

Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

Открытость и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость [14].

Использование языков традиционного программирования и рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегриро-ванности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.

Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило:снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).

Проблемно/предметно-ориентированные ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ [9] обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты,классы,правила,процедуры).

Структура экспертных систем

Типичная статическая ЭС состоит из следующих основных компонентов (рис. 1.):

 

База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.

Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.

Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

В разработке ЭС участвуют представители следующих специальностей:

эксперт в проблемной области, задачи которой будет решать ЭС;

инженер по знаниям - специалист по разработке ЭС (используемые им технологию, методы называют технологией (методами) инженерии знаний);

программист по разработке инструментальных средств (ИС), предназначенных для ускорения разработки ЭС.

Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его.

Эксперт определяет знания (данные и правила), характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний.

Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС; осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом ИС; выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом.

Программист разрабатывает ИС (если ИС разрабатывается заново), содержащее в пределе все основные компоненты ЭС, и осуществляет его сопряжение с той средой, в которой оно будет использовано.

Экспертная система работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭС).

В режиме приобретения знаний общение с ЭС осуществляет (через посредничество инженера по знаниям) эксперт. В этом режиме эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования с данными, характерные для рассматриваемой области.

Отметим, что режиму приобретения знаний в традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода в случае ЭС разработку программ осуществляет не программист, а эксперт (с помощью ЭС), не владеющий программированием.

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам), или быть специалистом (в этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу). В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ формирует решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операции, но и предварительно формирует ее. Если реакция системы не понятна пользователю, то он может потребовать объяснения:

"Почему система задает тот или иной вопрос?", "как ответ, собираемый системой, получен?".

Структуру, приведенную на рис. 1.1, называют структурой статической ЭС. ЭС данного типа используются в тех приложениях, где можно не учитывать изменения окружающего мира, происходящие за время решения задачи. Первые ЭС, получившие практическое использование, были статическими.

На рис. 1.2 показано, что в архитектуру динамической ЭС по сравнению со статической ЭС вводятся два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением. Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической ЭС (база знаний и машина вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий.

Подчеркнем, что структура ЭС, представленная на рис. 1.1 и 1.2, отражает только компоненты (функции), и многое остается "за кадром". На рис. 1.3 приведена обобщенная структура современного ИС для создания динамических ЭС, содержащая кроме основных компонентов те возможности, которые позволяют создавать интегрированные приложение в соответствии с современной технологией программирования.

Этапы разработки экспертных систем

Разработка ЭС имеет существенные отличия от разработки обычного программного продукта. Опыт создания ЭС показал, что использование при их разработке методологии, принятой в традиционном программировании, либо чрезмерно затягивает процесс создания ЭС, либо вообще приводит к отрицательному результату.

Использовать ЭС следует только тогда, когда разработка ЭС возможна, оправдана и методы инженерии знаний соответствуют решаемой задаче. Чтобы разработка ЭС была возможной для данного приложения, необходимо одновременное выполнение по крайней мере следующих требований:

1) существуют эксперты в данной области, которые решают задачу значительно лучше, чем начинающие специалисты;

2) эксперты сходятся в оценке предлагаемого решения, иначе нельзя будет оценить качество разработанной ЭС;

3) эксперты способны вербализовать (выразить на естественном языке) и объяснить используемые ими методы, в противном случае трудно рассчитывать на то, что знания экспертов будут "извлечены" и вложены в ЭС;

4) решение задачи требует только рассуждений, а не действий;

5) задача не должна быть слишком трудной (т.е. ее решение должно занимать у эксперта несколько часов или дней, а не недель);

6) задача хотя и не должна быть выражена в формальном виде, но все же должна относиться к достаточно "понятной" и структурированной области, т.е. должны быть выделены основные понятия, отношения и известные (хотя бы эксперту) способы получения решения задачи;

7) решение задачи не должно в значительной степени использовать "здравый смысл" (т.е. широкий спектр общих сведений о мире и о способе его функционирования, которые знает и умеет использовать любой нормальный человек), так как подобные знания пока не удается (в достаточном количестве) вложить в системы искусственного интеллекта.

Использование ЭС в данном приложении может быть возможно, но не оправдано. Применение ЭС может быть оправдано одним из следующих факторов:

 решение задачи принесет значительный эффект, например экономический;

 использование человека-эксперта невозможно либо из-за недостаточного количества экспертов, либо из-за необходимости выполнять экспертизу одновременно в различных местах;

 использование ЭС целесообразно в тех случаях, когда при передаче информации эксперту происходит недопустимая потеря времени или информации;

 использование ЭС целесообразно при необходимости решать задачу в окружении, враждебном для человека.

Приложение соответствует методам ЭС, если решаемая задача обладает совокупностью следующих характеристик:

1) задача может быть естественным образом решена посредством манипуляции с символами (т.е. с помощью символических рассуждений), а не манипуляций с числами, как принято в математических методах и в традиционном программировании;

2) задача должна иметь эвристическую, а не алгоритмическую природу, т.е. ее решение должно требовать применения эвристических правил. Задачи, которые могут быть гарантированно решены (с соблюдением заданных ограничений) с помощью некоторых формальных процедур, не подходят для применения ЭС;

3) задача должна быть достаточно сложна, чтобы оправдать затраты на разработку ЭС. Однако она не должна быть чрезмерно сложной (решение занимает у эксперта часы, а не недели), чтобы ЭС могла ее решать;

4) задача должна быть достаточно узкой, чтобы решаться методами ЭС, и практически значимой.

При разработке ЭС, как правило, используется концепция "быстрого прототипа". Суть этой концепции состоит в том, что разработчики не пытаются сразу построить конечный продукт. На начальном этапе они создают прототип (прототипы) ЭС. Прототипы должны удовлетворять двум противоречивым требованиям: с одной стороны, они должны решать типичные задачи конкретного приложения, а с другой - время и трудоемкость их разработки должны быть весьма незначительны, чтобы можно было максимально запараллелить процесс накопления и отладки знаний (осуществляемый экспертом) с процессом выбора (разработки) программных средств (осуществляемым инженером по знаниям и программистом). Для удовлетворения указанным требованиям, как правило, при создании прототипа используются разнообразные средства, ускоряющие процесс проектирования.

Прототип должен продемонстрировать пригодность методов инженерии знаний для данного приложения. В случае успеха эксперт с помощью инженера по знаниям расширяет знания прототипа о проблемной области. При неудаче может потребоваться разработка нового прототипа или разработчики могут прийти к выводу о непригодности методов ЭС для данного приложения. По мере увеличения знаний прототип может достигнуть такого состояния, когда он успешно решает все задачи данного приложения. Преобразование прототипа ЭС в конечный продукт обычно приводит к перепрограммированию ЭС на языках низкого уровня, обеспечивающих как увеличение быстродействия ЭС, так и уменьшение требуемой памяти. Трудоемкость и время создания ЭС в значительной степени зависят от типа используемого инструментария.

В ходе работ по созданию ЭС сложилась определенная технология их разработки, включающая шесть следующих этапов (рис. 1.4):

идентификацию, концептуализацию, формализацию, выполнение, тестирование, опытную эксплуатацию. На этапе идентификации определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.

 

На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.

На этапе формализации выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.

На этапе выполнения осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.

Интерфейс с конечным пользователем

Система G2 предоставляет разработчику богатые возможности для формирования простого, ясного и выразительного графического интерфейса с пользователем с элементами мультипликации. Предлагаемый инструментарий позволяет наглядно отображать технологические процессы практически неограниченной сложности на разных уровнях абстракции и детализации. Кроме того, графическое отображение взаимосвязей между объектами приложения может напрямую использоваться в декларативных конструкциях языка описания знаний.

RTworks не обладает собственными средствами для отображения текущего состояния управляемого процесса. Разработчик приложения вынужден использовать систему Dataview фирмы VI Corporation, что в значительной степени ограничивает его возможности.

Интерфейс с пользователем TDC Expert ограничен возможностями системы TDC 3000, т.е. взаимодействие с конечным пользователем

ограничивается текстовым режимом работы.

Представление знаний в экспертных системах

Первый и основной вопрос, который надо решить при представлении знаний, - это вопрос определения состава знаний, т.е. определение того, "ЧТО ПРЕДСТАВЛЯТЬ" в экспертной системе. Второй вопрос касается того, "КАК ПРЕДСТАВЛЯТЬ" знания. Необходимо отметить, что эти две проблемы не являются независимыми. Действительно, выбранный способ представления может оказаться непригодным в принципе либо неэффективным для выражения некоторых знаний.

По нашему мнению, вопрос "КАК ПРЕДСТАВЛЯТЬ" можно разделить на две в значительной степени независимые задачи: как организовать (структурировать) знания и как представить знания в выбранном формализме.

Стремление выделить организацию знаний в самостоятельную задачу вызвано, в частности, тем, что эта задача возникает для любого языка представления и способы решения этой задачи являются одинаковыми (либо сходными) вне зависимости от используемого формализма.

Итак, в круг вопросов, решаемых при представлении знаний, будем включать следующие:

определение состава представляемых знаний;

организацию знаний;

представление знаний, т.е. определение модели представления. Состав знаний ЭС определяется следующими факторами:

проблемной средой;

архитектурой экспертной системы;

потребностями и целями пользователей;

языком общения.

В соответствии с общей схемой статической экспертной системы (см. рис. 1.1) для ее функционирования требуются следующие знания:

 знания о процессе решения задачи (т.е. управляющие знания), используемые интерпретатором (решателем);

 знания о языке общения и способах организации диалога, используемые лингвистическим процессором (диалоговым компонентом);

 знания о способах представления и модификации знаний, используемые компонентом приобретения знаний;

 поддерживающие структурные и управляющие знания, используемые объяснительным компонентом.

Для динамической ЭС, кроме того, необходимы следующие знания:

1) знания о методах взаимодействия с внешним окружением;

2) знания о модели внешнего мира.

Зависимость состава знаний от требований пользователя проявляется в следующем:

 какие задачи (из общего набора задач) и с какими данными хочет решать пользователь;

 каковы предпочтительные способы и методы решения;

 при каких ограничениях на количество результатов и способы их получения должна быть решена задача;

 каковы требования к языку общения и организации диалога;

 какова степень общности (конкретности) знаний о проблемной области, доступная пользователю;

 каковы цели пользователей.

Состав знаний о языке общения зависит как от языка общения, так и от требуемого уровня понимания.

С учетом архитектуры экспертной системы знания целесообразно делить на интерпретируемые и неинтерпретируемые . К первому типу относятся те знания, которые способен интерпретировать решатель (интерпретатор). Все остальные знания относятся ко второму типу. Решатель не знает их структуры и содержания. Если эти знания используются каким-либо компонентом системы, то он не "осознает" этих знаний. Неинтерпретируемые знания подразделяются на вспомогательные знания, хранящие информацию о лексике и грамматике языка общения, информацию о структуре диалога, и поддерживающие знания. Вспомогательные знания обрабатываются естественно-языковой компонентой, но ход этой обработки решатель не осознает, так как этот этап обработки входных сообщений является вспомогательным для проведения экспертизы. Поддерживающие знания используются при создании системы и при выполнении объяснений. Поддерживающие знания выполняют роль описаний (обоснований) как интерпретируемых знаний, так и действий системы. Поддерживающие знания подразделяются на технологические и семантические. Технологические поддерживающие знания содержат сведения о времени создания описываемых ими знаний, об авторе знаний и т.п. Семантические поддерживающие знания содержат смысловое описание этих знаний. Они содержат информацию о причинах ввода знаний, о назначении знаний, описывают способ использования знаний и получаемый эффект. Поддерживающие знания имеют описательный характер.

Интерпретируемые знания можно разделить на предметные знания, управляющие знания и знания о представлении. Знания о представлении содержат информацию о том, каким образом (в каких структурах) в системе представлены интерпретируемые знания.

Предметные знания содержат данные о предметной области и способах преобразования этих данных при решении поставленных задач. Отметим, что по отношению к предметным знаниям знания о представлении и знания об управлении являются метазнаниями. В предметных знаниях можно выделить описатели и собственно предметные знания. Описатели содержат определенную информацию о предметных знаниях, такую, как коэффициент определенности правил и данных, меры важности и сложности. Собственно предметные знания разбиваются на факты и исполняемые утверждения. Факты определяют возможные значения сущностей и характеристик предметной области. Исполняемые утверждения содержат информацию о том, как можно изменять описание предметной области в ходе решения задач. Говоря другими словами, исполняемые утверждения - это знания, задающие процедуры обработки. Однако мы избегаем использовать термин "процедурные знания", так как хотим подчеркнуть, что эти знания могут быть заданы не только в процедурной, но и в декларативной форме.

Управляющие знания можно разделить на фокусирующие и решающие. Фокусирующие знания описывают, какие знания следует использовать в той или иной ситуации. Обычно фокусирующие знания содержат сведения о наиболее перспективных объектах или правилах, которые целесообразно использовать при проверке соответствующих гипотез (см. п. 9.2). В первом случае внимание фокусируется на элементах рабочей памяти, во втором - на правилах базы знаний. Решающие знания содержат информацию, используемую для выбора способа интерпретации знаний, подходящего к текущей ситуации. Эти знания применяются для выбора стратегий или эвристик, наиболее эффективных для решения данной задачи.

Качественные и количественные показатели экспертной системы могут быть значительно улучшены за счет использования метазнании, т.е. знаний о знаниях. Метазнания не представляют некоторую единую сущность, они могут применяться для достижения различных целей. Перечислим возможные назначения метазнаний :

1) метазнания в виде стратегических метаправил используются для выбора релевантных правил ;

2) метазнания используются для обоснования целесообразности применения правил из области экспертизы;

3) метаправила используются для обнаружения синтаксических и семантических ошибок в предметных правилах;

4) метаправила позволяют системе адаптироваться к окружению путем перестройки предметных правил и функций;

5) метаправила позволяют явно указать возможности и ограничения системы, т.е. определить, что система знает, а что не знает.

Вопросы организации знаний необходимо рассматривать в любом представлении, и их решение в значительной степени не зависит от выбранного способа (модели) представления. Выделим следующие аспекты проблемы организации знаний :

 организация знаний по уровням представления и по уровням детальности;

 организация знаний в рабочей памяти;

 организация знаний в базе знаний.

Уравни представления и уровни детальности

Для того чтобы экспертная система могла управлять процессом поиска решения, была способна приобретать новые знания и объяснять свои действия, она должна уметь не только использовать свои знания, но и обладать способностью понимать и исследовать их, т.е. экспертная система должна иметь знания о том, как представлены ее знания о проблемной среде. Если знания о проблемной среде назвать знаниями нулевого уровня представления, то первый уровень представления содержит метазнания, т.е. знания о том, как представлены во внутреннем мире системы знания нулевого уровня. Первый уровень содержит знания о том, какие средства используются для представления знаний нулевого уровня. Знания первого уровня играют существенную роль при управлении процессом решения, при приобретении и объяснении действий системы. В связи с тем, что знания первого уровня не содержат ссылок на знания нулевого уровня, знания первого уровня независимы от проблемной среды.

Число уровней представления может быть больше двух. Второй Уровень представления содержит сведения о знаниях первого уровня, т.е. знания о представлении базовых понятий первого уровня. Разделение знаний по уровням представления обеспечивает расширение области применимости системы.

Выделение уровней детальности позволяет рассматривать знания с различной степенью подробности. Количество уровней детальности во многом определяется спецификой решаемых задач, объемом знаний и способом их представления. Как правило, выделяется не менее трех уровней детальности, отражающих соответственно общую, логическую и физическую организацию знаний. Введение нескольких уровней детальности обеспечивает дополнительную степень гибкости системы, так как позволяет производить изменения на одном уровне, не затрагивая другие. Изменения на одном уровне детальности могут приводить к дополнительным изменениям на этом же уровне , что оказывается необходимым для обеспечения согласованности структур данных и программ. Однако наличие различных уровней препятствует распространению изменений с одного уровня на другие.

Организация знаний в рабочей системе

Рабочая память (РП) экспертных систем предназначена для хранения данных. Данные в рабочей памяти могут быть однородны или разделяются на уровни по типам данных. В последнем случае на каждом уровне рабочей памяти хранятся данные соответствующего типа. Выделение уровней усложняет структуру экспертной системы, но делает систему более эффективной. Например, можно выделить уровень планов , уровень агенды (упорядоченного списка правил, готовых к выполнению) и уровень данных предметной области (уровень решений).

В современных экспертных системах данные в рабочей памяти рассматриваются как изолированные или как связанные. В первом случае рабочая память состоит из множества простых элементов , а во втором - из одного или нескольких (при нескольких уровнях в РП) сложных элементов (например, объектов). При этом сложный элемент соответствует множеству простых, объединенных в единую сущность. Теоретически оба подхода обеспечивают полноту, но использование изолированных элементов в сложных предметных областях приводит к потере эффективности.

Данные в РП в простейшем случае являются константами и (или) переменными. При этом переменные могут трактоваться как характеристики некоторого объекта, а константы - как значения соответствующих характеристик. Если в РП требуется анализировать одновременно несколько различных объектов, описывающих текущую проблемную ситуацию, то необходимо указывать, к каким объектам относятся рассматриваемые характеристики. Одним из способов решения этой задачи является явное указание того, к какому объекту относится характеристика.

Если РП состоит из сложных элементов, то связь между отдельными объектами указывается явно, например заданием семантических отношений. При этом каждый объект может иметь свою внутреннюю структуру. Необходимо отметить, что для ускорения поиска и сопоставления данные в РП могут быть связаны не только логически, но и ассоциативно.

Организация знаний в базе данных

Показателем интеллектуальности системы с точки зрения представления знаний считается способность системы использовать в нужный момент необходимые (релевантные) знания. Системы, не имеющие средств для определения релевантных знаний, неизбежно сталкиваются с проблемой "комбинаторного взрыва". Можно утверждать, что эта проблема является одной из основных причин, ограничивающих сферу применения экспертных систем. В проблеме доступа к знаниям можно выделить три аспекта: связность знаний и данных, механизм доступа к знаниям и способ сопоставления.

Связность {агрегация) знаний является основным способом, обеспечивающим ускорение поиска релевантных знаний. Большинство специалистов пришли к убеждению, что знания следует организовывать вокруг наиболее важных объектов (сущностей) предметной области. Все знания, характеризующие некоторую сущность, связываются и представляются в виде отдельного объекта. При подобной организации знаний, если системе потребовалась информация о некоторой сущности, то она ищет объект, описывающий эту сущность, а затем уже внутри объекта отыскивает информацию о данной сущности. В объектах целесообразно выделять два типа связок между элементами: внешние и внутренние. Внутренние связки объединяют элементы в единый объект и предназначены для выражения структуры объекта. Внешние связки отражают взаимозависимости, существующие между объектами в области экспертизы. Многие исследователи классифицируют внешние связки на логические и ассоциативные. Логические связки выражают семантические отношения между элементами знаний. Ассоциативные связки предназначены для обеспечения взаимосвязей, способствующих ускорению процесса поиска релевантных знаний.

Основной проблемой при работе с большой базой знаний является проблема поиска знаний, релевантных решаемой задаче. В связи с тем, что в обрабатываемых данных может не содержаться явных указаний на значения, требуемые для их обработки, необходим более общий механизм доступа, чем метод прямого доступа (метод явных ссылок). Задача этого механизма состоит в том, чтобы по некоторому описанию сущности , имеющемуся в рабочей памяти, найти , базе знаний объекты, удовлетворяющие этому описанию. Очевидно, что упорядочение и структурирование знаний могут значительно ускорить процесс поиска.

Нахождение желаемых объектов в общем случае уместно рассматривать как двухэтапный процесс. На первом этапе, соответствующем процессу выбора по ассоциативным связкам, совершается предварительный выбор в базе знаний потенциальных кандидатов на роль желаемых объектов. На втором этапе путем выполнения операции сопоставления потенциальных кандидатов с описаниями кандидатов осуществляется окончательный выбор искомых объектов. При организации подобного механизма доступа возникают определенные трудности: Как выбрать критерий пригодности кандидата? Как организовать работу в конфликтных ситуациях? и т.п.

Операция сопоставления может использоваться не только как средство выбора нужного объекта из множества кандидатов; она может быть использована для классификации, подтверждения, декомпозиции и коррекции. Для идентификации неизвестного объекта он может быть сопоставлен с некоторыми известными образцами. Это позволит классифицировать неизвестный объект как такой известный образец, при сопоставлении с которым были получены лучшие результаты. При поиске сопоставление используется для подтверждения некоторых кандидатов из множества возможных. Если осуществлять сопоставление некоторого известного объекта с неизвестным описанием, то в случае успешного сопоставления будет осуществлена частичная декомпозиция описания.

Операции сопоставления весьма разнообразны. Обычно выделяют следующие их формы: синтаксическое, параметрическое, семантическое и принуждаемое сопоставления. В случае синтаксического сопоставления соотносят формы (образцы), а не содержание объектов. Успешным является сопоставление, в результате которого образцы оказываются идентичными. Обычно считается, что переменная одного образца может быть идентична любой константе (или выражению) другого образца. Иногда на переменные, входящие в образец, накладывают требования, определяющие тип констант, с которыми они могут сопоставляться. Результат синтаксического сопоставления является бинарным: образцы сопоставляются или не сопоставляются . В параметрическом сопоставлении вводится параметр, определяющий степень сопоставления. В случае семантического сопоставления соотносятся не образцы объектов, а их функции. В случае принуждаемого сопоставления один сопоставляемый образец рассматривается с точки зрения другого. В отличие от других типов сопоставления здесь всегда может быть получен положительный результат. Вопрос состоит в силе принуждения. Принуждение могут выполнять специальные процедуры, связываемые с объектами. Если эти процедуры не в состоянии осуществить сопоставление, то система сообщает, что успех может быть достигнут только в том случае, если определенные части рассматриваемых сущностей можно считать сопоставляющимися.

Методы поиска решений в экспертных системах

Методы решения задач, основанные на сведении их к поиску, зависят от

психодиагностика в психосоматике, а также другие системы. особенностей предметной области, в которой решается задача, и от требований, предъявляемых пользователем к решению. Особенности предметной области с точки зрения методов решения можно характеризовать следующими параметрами:

 размер, определяющий объем пространства, в котором предстоит искать решение;

 изменяемость области, характеризует степень изменяемости области во времени и пространстве (здесь будем выделять статические и динамические области);

 полнота модели, описывающей область, характеризует адекватность модели, используемой для описания данной области. Обычно если модель не полна, то для описания области используют несколько моделей, дополняющих друг друга за счет отражения различных свойств предметной области;

 определенность данных о решаемой задаче, характеризует степень точности (ошибочности) и полноты (неполноты) данных. Точность (ошибочность) является показателем того, что предметная область с точки зрения решаемых задач описана точными или неточными данными; под полнотой (неполнотой) данных понимается достаточность (недостаточность) входных данных для однозначного решения задачи.

Требования пользователя к результату задачи, решаемой с помощью поиска, можно характеризовать количеством решений и свойствами результата и (или) способом его получения. Параметр "количество решений" может принимать следующие основные значения: одно решение, несколько решений, все решения. Параметр "свойства" задает ограничения, которым должен удовлетворять полученный результат или способ его получения. Так, например, для системы, выдающей рекомендации по лечению больных, пользователь может указать требование не использовать некоторое лекарство (в связи с его отсутствием или в связи с тем, что оно противопоказано данному пациенту). Параметр "свойства" может определять и такие особенности, как время решения ("не более чем", "диапазон времени" и т.п.), объем памяти, используемой для получения результата, указание об обязательности (невозможности) использования каких-либо знаний (данных) и т.п.

Итак, сложность задачи, определяемая вышеприведенным набором параметров, варьируется от простых задач малой размерности с неизменяемыми определенными данными и отсутствием ограничений на результат и способ его получения до сложных задач большой размерности с изменяемыми, ошибочными и неполными данными и произвольными ограничениями на результат и способ его получения. Из общих соображений ясно, что каким-либо одним методом нельзя решить все задачи. Обычно одни методы превосходят другие только по некоторым из перечисленных параметров.

Рассмотренные ниже методы могут работать в статических и динамических проблемных средах. Для того чтобы они работали в условиях динамики, необходимо учитывать время жизни значений переменных, источник данных для переменных, а также обеспечивать возможность хранения истории значений переменных, моделирования внешнего окружения и оперирования временными категориями в правилах.

Существующие методы решения задач, используемые в экспертных системах, можно классифицировать следующим образом:

 методы поиска в одном пространстве - методы, предназначенные для использования в следующих условиях: области небольшой размерности, полнота модели, точные и полные данные;

 методы поиска в иерархических пространствах - методы, предназначенные для работы в областях большой размерности;

 методы поиска при неточных и неполных данных ;

 методы поиска, использующие несколько моделей, предназначенные для работы с областями, для адекватного описания которых одной модели недостаточно.

Предполагается, что перечисленные методы при необходимости должны объединяться для того, чтобы позволить решать задачи сложность которых возрастает одновременно по нескольким параметрам.

Инструментальный Комплекс Для Создания Статических Экспертных Систем (На Примере Интегрированного Комплекса Эко)

Рассмотрим особенности инструментальных средств для создания статических ЭС на примере комплекса ЭКО, разработанного в РосНИИ ИТ и АП. Наиболее успешно комплекс применяется для создания ЭС, решающих задачи диагностики (технической и медицинской), эвристического оценивания (риска, надежности и т.д.), качественного прогнозирования, а также обучения.

Комплекс ЭКО используется: для создания коммерческих и промышленных экспертных систем на персональных ЭВМ, а также для быстрого создания прототипов экспертных систем с целью определения применимости методов инженерии знаний в некоторой конкретной проблемной области.

На основе комплекса ЭКО было разработано более 100 прикладных экспертных систем. Среди них отметим следующие:

 поиск одиночных неисправностей в персональном компьютере;

 оценка состояния гидротехнического сооружения (Чарвакская ГЭС);

 подготовка деловых писем при ведении переписки с зарубежными партнерами;

 проведение скрининговой оценки иммунологического статуса;

 оценка показаний микробиологического обследования пациента, страдающего неспецифическими хроническими заболеваниями легких;

Средства представления знаний и стратегии управления

Комплекс ЭКО включает три компонента.

Ядром комплекса является интегрированная оболочка экспертных систем ЭКО, которая обеспечивает быстрое создание эффективных приложений для решения задач анализа в статических проблемных средах типа 1 и 2.

При разработке средств представления знаний оболочки преследовались две основные цели: эффективное решение достаточно широкого и практически значимого класса задач средствами персональных компьютеров; гибкие возможности по описанию пользовательского интерфейса и проведению консультации в конкретных приложениях. При представлении знаний в оболочке используются специализированные (частные) -утверждения типа "атрибут - значение" и частные правила, что позволяет исключить ресурсоемкую операцию сопоставления по образцу и добиться эффективности разрабатываемых приложений. Выразительные возможности оболочки удалось существенно расширить за счет интегрированности, обеспечиваемой путем вызова внешних программ через сценарий консультации и стыковки с базами данных (ПИРС и dBase IV) и внешними программами. В оболочке ЭКО обеспечивается слабая структуризация БЗ за счет ее разделения на отдельные компоненты - для решения отдельных подзадач в проблемной среде - модели (понятию "модель" ЭКО соответствует понятие "модуль" базы знаний системы G2).

С точки зрения технологии разработки ЭС оболочка поддерживает подходы, основанные на поверхностных знаниях и структурировании процесса решения.

Оболочка функционирует в двух режимах: в режиме приобретения знаний и в режиме консультации (решения задач). В первом режиме разработчик ЭС средствами диалогового редактора вводит в БЗ описание конкретного приложения в терминах языка представления знаний оболочки. Это описание компилируется в сеть вывода с прямыми адресными ссылками на конкретные утверждения и правила. Во втором режиме оболочка решает конкретные задачи пользователя в диалоговом или пакетном режиме. При этом решения выводятся от целей к данным (обратное рассуждение).

Для расширения возможностей оболочки по работе с глубинными знаниями комплекс ЭКО может быть дополнен компонентом К-ЭКО (конкретизатором знаний), который позволяет описывать закономерности в проблемных средах в терминах общих (абстрактных) объектов и правил. К-ЭКО используется на этапе приобретения знаний вместо диалогового редактора оболочки для преобразования общих описаний в конкретные сети вывода, допускающие эффективный вывод решений средствами оболочки ЭКО. Таким образом, использование конкретизатора обеспечивает возможность работы с проблемными средами типа 2 (см. гл.З).

Третий компонент комплекса - система ИЛИС, позволяющая создавать ЭС в статических проблемных средах за счет индуктивного обобщения данных (примеров) и предназначенная для использования в тех приложениях, где отсутствие правил, отражающих закономерности в проблемной среде, возмещается обширным экспериментальным материалом. Система ИЛИС обеспечивает автоматическое формирование простейших конкретных правил и автономное решение задач на их основе; при этом используется жесткая схема диалога с пользователем. Поскольку при создании реальных приложений эксперты представляют, как правило, и знания о закономерностях в проблемной среде, и экспериментальный материал (для решения частных подзадач), возникает необходимость в использовании правил, сформированных системой ИЛИС, в рамках более сложных средств представления знаний. Комплекс ЭКО обеспечивает автоматический перевод таких правил в формат оболочки ЭКО. В результате удается получить полное (адекватное) представление реальной проблемной среды, кроме того, задать гибкое описание организации взаимодействия ЭС с конечным пользователем.

Инструментальный комплекс для создания экспертных систем реального времени (на примере интегрированной среды g2-gensym corp., Сша)

История развития ИС для создания ЭС реального времени началась в 1985 г., когда фирма Lisp Machine Inc. выпустила систему Picon для символьных ЭВМ Symbolics. Успех этого ИС привел к тому, что группа ведущих разработчиков Picon в 1986 г. образовала частную фирму Gensym, которая, значительно развив идеи, заложенные в Picon, в 1988 г. вышла на рынок с ИС под названием G2, версия 1.0. В настоящее время функционирует версия 4.2 и готовится к выпуску версия 5.0.

Основное предназначение программных продуктов фирмы Gensym (США) - помочь предприятиям сохранять и использовать знания и опыт их наиболее талантливых и квалифицированных сотрудников в интеллектуальных системах реального времени, повышающих качество продукции, надежность и безопасность производства и снижающих производственные издержки. О том, как фирме Gensym удается справиться с этой задачей, говорит хотя бы то, что сегодня ей принадлежат 50% мирового рынка экспертных систем, используемых в системах управления.

С отставанием от Gensym на 2 - 3 года другие фирмы начали создавать свои ИС для ЭС РВ. С точки зрения независимых экспертов NASA, проводивших комплексное исследование характеристик и возможностей некоторых из перечисленных систем, в настоящее время наиболее продвинутым ИС, безусловно, остается G2 (Gensym, США); следующие места со значительным отставанием (реализовано менее 50% возможностей G2) занимают RTWorks - фирма Talarian (США), COMDALE/C (Comdale Techn. - Канада), COGSYS (SC - США), ILOG Rules (ILOG - Франция).

Классы задач, для которых предназначена G2 и подобные ей системы:

 мониторинг в реальном масштабе времени;

 системы управления верхнего уровня;

 системы обнаружения неисправностей;

 диагностика;

 составление расписаний;

 планирование;

 оптимизация;

 системы - советчики оператора;

 системы проектирования.

Инструментальные средства фирмы Gensym являются эволюционным шагом в развитии традиционных экспертных систем от статических предметных областей к динамическим. Немалую долю успеха фирме Gensym обеспечивают основные принципы, которых она придерживается в своих новых разработках:

 проблемно/предметная ориентация;

 следование стандартам;

 независимость от вычислительной платформы;

 совместимость снизу-вверх с предыдущими версиями;

 универсальные возможности, не зависимые от решаемой задачи;

 обеспечение технологической основы для прикладных систем;

 комфортная среда разработки;

 поиск новых путей развития технологии;

 распределенная архитектура клиент-сервер;

 высокая производительность.

Основным достоинством оболочки экспертных систем G2 для российских пользователей является возможность применять ее как интегрирующий компонент, позволяющий за счет открытости интерфейсов и поддержки широкого спектра вычислительных платформ легко объединить уже существующие, разрозненные средства автоматизации в единую комплексную систему управления, охватывающую все аспекты производственной деятельности - от формирования портфеля заказов до управления технологическим процессом и отгрузки готовой продукции. Это особенно важно для отечественных предприятий, парк технических и программных средств которых формировался по большей части бессистемно, под влиянием резких колебаний в экономике.

Кроме системы G2, как базового средства разработки, фирма Gensym предлагает комплекс проблемно/предметно-ориентированных расширений для быстрой реализации сложных динамических систем на основе специализированных графических языков, включающих параметризуемые операторные блоки для представления элементов технологического процесса и типовых задач обработки информации. Набор инструментальных сред фирмы Gensym, сгруппированный по проблемной ориентации, охватывает все стадии производственного процесса и выглядит следующим образом:

 интеллектуальное управление производством - G2, G2 Diagnostic Assistant (GDA), NeurOn-Line (NOL), Statistical Process Control (SPC), BatchDesign_Kit;

 оперативное планирование - G2, G2 Scheduling Toolkit (GST), Dynamic Scheduling Packadge (DSP);

 разработка и моделирование производственных процессов - G2, ReThink, BatchDesign_Kit;

 управление операциями и корпоративными сетями - G2, Fault Expert.

Несмотря на то, что первая версия системы G2 появилась не так давно - в 1988 г., ее даже в богатой Америке никто не назовет дешевой. G2 можно назвать бестселлером на рынке программных продуктов - на начало 1996 г. в мире было установлено более 5000 ее копий. Фирма Gensym обслуживает более 30 отраслей - от аэрокосмических исследований до производства пищевых продуктов. Список пользователей G2 выглядит как справочник Who-Is-Who в мировой промышленности. 25 самых крупных индустриальных мировых корпораций используют G2. На базе G2 написано более 500 действующих приложений.

Чем же объясняется успех инструментального комплекса G2? Прежде всего G2 - динамическая система в полном смысле этого слова. G2 - это объектно-ориентированная интегрированная среда для разработки и сопровождения приложений реального времени, использующих базы знаний. G2 функционирует на большинстве существующих платформ (табл.9.1). База знаний G2 сохраняется в обычном

Таблица 9.1 Платформы, на которых функционирует G2

Фирма-производитель

Вычислительная система

Операционная среда

Digital

VAX Зххх,4ххх,бххх,

VMS

Equipment

7ххх, 8ххх,9ххх

 

 

 

 

DECstation Зххх, бххх

ULTRIX

 

 

DEC Alpha APX

Open VMS, OSF/1,

 

 

 

 

Windows

 

 

 

 

NT

SUN

SUN-4

Sun OS

Microsystems

 

 

 

 

 

 

SPARC 1,2, 10, LX,

Sun OS/Solaris 1, Solaris

 

 

Classic

2.x

Hewlett Packard

НР9000/4хх, 7хх, 8хх

HP-UX

IBM

RISC 6000

AIX

Data General

AViiON

DG/UX

Silicon Graphics

IRIS, INDIGO

IRIX

ПЭВМ

Intel 486/Pentium

Windows NT, Windows-95

Motorola

Motorola 88000

UNIX

NEC

EWS 4800

EWS-UX/V

 

ASCII-файле, который однозначно интерпретируется на любой из поддерживаемых платформ. Перенос приложения не требует его перекомпиляции и заключается в простом переписывании файлов. Функциональные возможности и внешний вид приложения не претерпевают при этом никаких изменений.


Вернуться к списку лекций